
The Power of Abstraction

Barbara Liskov
November 2009

Outline

Inventing abstract data types
CLU
Type hierarchy
What next

Data Abstraction Prehistory

The Venus machine

The Interdata 3

Data Abstraction Prehistory

The Venus machine
The Venus operating system

Data Abstraction Prehistory

The Venus machine
The Venus operating system
Programming methodology

Programming Methodology

How should programs be designed?
How should programs be structured?

The Landscape

E. W. Dijkstra. Go To Statement
Considered Harmful. Cacm, Mar. 1968

The Landscape

N. Wirth. Program Development by
Stepwise Refinement. Cacm, April 1971

The Landscape

D. L. Parnas. Information Distribution
Aspects of Design Methodology. IFIP
Congress, 1971

“The connections between modules are
the assumptions which the modules
make about each other.”

Partitions

B. Liskov. A Design Methodology for
Reliable Software Systems. FJCC, Dec.
1972

Partitions

Partition state

op1 op2 op3

From Partitions to ADTs

How can these ideas be applied to
building programs?

Idea

Connect partitions to data types

Meeting in Savanah

ACM Sigplan-Sigops interface meeting.
April 1973. (Sigplan Notices, Sept.
1973)
Started to work with Steve Zilles

The Landscape

Extensible Languages
S. Schuman and P. Jourrand. Definition
Mechanisms in Extensible Programming
Languages. AFIPS. 1967
R. Balzer. Dataless Programming. FJCC
1967

The Landscape

O-J. Dahl and C.A.R. Hoare. Hierarchical
Program Structures. Structured
Programming, Academic Press, 1972

The Landscape

J. H. Morris. Protection in Programming
Languages. Cacm. Jan. 1973

The Landscape

W. Wulf and M. Shaw. Global Variable
Considered Harmful. Sigplan Notices.
Feb. 1973.

Abstract Data Types

B. Liskov and S. Zilles. Programming
with Abstract Data Types. ACM Sigplan
Conference on Very High Level
Languages. April 1974

What that paper proposed

Abstract data types
A set of operations
And a set of objects
The operations provide the only way to use
the objects

What that paper proposed

Abstract data types
Clusters with encapsulation

Polymorphism
Static type checking (we hoped)
Exception handling

From ADTs to CLU

Participants
Russ Atkinson
Craig Schaffert
Alan Snyder

Why a Programming
Language?

Communicating to programmers
Do ADTs work in practice?
Getting a precise definition
Achieving reasonable performance

Language Design

Goals
Expressive power, simplicity, performance,
ease of use

Minimality
Uniformity
Safety

Language Design

Restrictions
No concurrency
No go tos
No inheritance

Some Assumptions/Decisions

Heap-based with garbage collection!
No block structure!
Separate compilation
Static type checking

CLU Mechanisms

Clusters
Polymorphism
Exception handling
Iterators

Clusters
IntSet = cluster is create, insert, delete, isIn, …

end IntSet

Clusters
IntSet = cluster is create, insert, delete, …
end IntSet

IntSet s := IntSet$create()
IntSet$insert(s, 3)

Clusters
IntSet = cluster is create, insert, delete, …

rep = array[int]

Clusters
IntSet = cluster is create, insert, delete, …

rep = array[int]

create = proc () returns (cvt)
return (rep$create())
end create

Polymorphism

Set = cluster[T: type] is create, insert, …
end Set

Set[int] s := Set[int]$create()
Set[int]$insert(s, 3)

Polymorphism

Set = cluster[T: type] is create, insert, …
where T has equal: proctype(T, T)

returns (bool)

Polymorphism

Set = cluster[T: type] is create, insert, …
where T has equal: proctype(T, T)

returns (bool)

rep = array[T]

insert = proc (x: cvt, e: T)
… if e = x[i] then …

Exception Handling

J. Goodenough. Exception Handling:
Issues and a Proposed Notation. Cacm,
Dec. 1975

Termination vs. resumption
How to specify handlers

Exception Handling

choose = proc (x: cvt) returns (T)
signals (empty)

if rep$size() = 0 then signal empty
…

Exception Handling

choose = proc (x: cvt) returns (T)
signals (empty)

if rep$size() = 0 then signal empty
…

set[T]$ choose(s)
except when empty: …

Exception Handling

Handling
Propagating
Shouldn’t happen

The failure exception

Principles
Accurate interfaces
Avoid useless code

Iterators

For all x in C do S

Iterators

For all x in C do S
Destroy the collection?
Complicate the abstraction?

Visit to CMU

Bill Wulf and Mary Shaw, Alphard
Generators

Iterators

sum: int := 0
for e: int in Set[int]$members(s) do

sum := sum + e
end

Iterators

Set = cluster[T] is create, …, members, …

rep = array[T]

members = iter (x: cvt) yields (T)
for z: T in rep$elements(x) do

yield (z) end

After CLU

Argus and distributed computing
Type Hierarchy

The Landscape

Inheritance was used for:
Implementation
Type hierarchy

Implementation Inheritance

Violated encapsulation!

Type hierarchy

Wasn’t well understood
E.g., stacks vs. queues

The Liskov Substitution
Principle (LSP)

Objects of subtypes should behave like
those of supertypes if used via
supertype methods

B. Liskov. Data abstraction and
hierarchy. Sigplan notices, May 1988

Polymorphism

where T has … vs.
where T subtype of S

Proofs happen at different times!

What Next?

Modularity based on abstraction is the
way things are done

Challenges

New abstraction mechanisms?
Massively Parallel Computers
Internet Computer

Storage and computation
Semantics, reliability, availability, security

The Power of Abstraction

Barbara Liskov
October 2009

