!'_ The Power of Abstraction

Barbara Liskov
November 2009

i Outline

= |Inventing abstract data types
= CLU
= Type hierarchy
= What next

‘L Data Abstraction Prehistory

= The Venus machine

‘L The Interdata 3

T D O L T

— =
TEm AN EN =

T

——

e

_ - —

e "'.L'.-.i.d..nl-:‘ S

AR e ol e e s vl e 0

i Data Abstraction Prehistory

= The Venus machine
= The Venus operating system

i Data Abstraction Prehistory

= The Venus machine
= The Venus operating system
= Programming methodology

i Programming Methodology

= How should programs be designed?
= How should programs be structured?

i The Landscape

= E. W. Dijkstra. Go To Statement
Considered Harmful. Cacm, Mar. 1968

i The Landscape

= N. Wirth. Program Development by
Stepwise Refinement. Cacm, April 1971

i The Landscape

s D. L. Parnas. Information Distribution

Aspects of Design Methodology. IFIP
Congress, 1971

s “The connections between modules are
the assumptions which the modules
make about each other.”

i Partitions

= B. Liskov. A Design Methodology for
Reliable Software Systems. FJCC, Dec.
1972

* Partitions

opl op2 op3

i From Partitions to ADTS

= How can these ideas be applied to
building programs?

i ldea

= Connect partitions to data types

i Meeting in Savanah

= ACM Sigplan-Sigops interface meeting.
April 1973. (Sigplan Notices, Sept.
1973)

s Started to work with Steve Zilles

i The Landscape

= Extensible Languages

= S. Schuman and P. Jourrand. Definition
Mechanisms in Extensible Programming
Languages. AFIPS. 1967

= R. Balzer. Dataless Programming. FJCC
1967

i The Landscape

= O-J. Dahl and C.A.R. Hoare. Hierarchical
Program Structures. Structured
Programming, Academic Press, 1972

i The Landscape

= J. H. Morris. Protection in Programming
Languages. Cacm. Jan. 1973

i The Landscape

= W. Wulf and M. Shaw. Global Variable
Considered Harmful. Sigplan Notices.
Feb. 1973.

i Abstract Data Types

= B. Liskov and S. Zilles. Programming
with Abstract Data Types. ACM Sigplan
Conference on Very High Level
Languages. April 1974

i What that paper proposed

= Abstract data types
= A set of operations
= And a set of objects

= The operations provide the only way to use
the objects

i What that paper proposed

= Abstract data types
= Clusters with encapsulation

= Polymorphism
= Static type checking (we hoped)
= Exception handling

i From ADTs to CLU

= Participants
= Russ Atkinson
= Craig Schaffert
« Alan Snyder

Why a Programming
i Language?

= Communicating to programmers

= Do ADTs work In practice?

= Getting a precise definition

= Achieving reasonable performance

i Language Design

s Goals

= EXpressive power, simplicity, performance,
ease of use

= Minimality
= Uniformity
» Safety

i Language Design

= Restrictions
= NO concurrency
= NO go tos
= NO Inheritance

i Some Assumptions/Decisions

= Heap-based with garbage collection!
= NoO block structure!

= Separate compilation

= Static type checking

i CLU Mechanisms

= Clusters

= Polymorphism

= Exception handling
= |terators

i Clusters

IntSet = cluster Is create, insert, delete, isln, ...

end IntSet

‘L Clusters

IntSet = cluster Is create, insert, delete, ...
end IntSet

IntSet s := IntSet$create()
IntSet$insert(s, 3)

i Clusters

IntSet = cluster Is create, insert, delete, ...

rep = array|int]

* Clusters

IntSet = cluster Is create, insert, delete, ...

rep = array|[int]

create = proc () returns (cvt)
return (rep$create())
end create

‘L Polymorphism

Set = cluster[T: type] Is create, Insert, ...
end Set

Set[int] s := Set[int]$create()
Set[int]$insert(s, 3)

* Polymorphism

Set = cluster[T: type] is create, insert, ...
where T has equal: proctype(T, T)
returns (bool)

i Polymorphism

Set = cluster[T: type] Is create, insert, ...
where T has equal: proctype(T, T)
returns (bool)

rep = array|[T]

Insert = proc (x: cvt, e: T)
.. I e =x[i] then ...

i Exception Handling

= J. Goodenough. Exception Handling:
Issues and a Proposed Notation. Cacm,
Dec. 1975

= Termination vs. resumption
= How to specify handlers

‘L Exception Handling

choose = proc (X: cvt) returns (T)
signals (empty)
T rep$size() = 0 then signal empty

‘L Exception Handling

choose = proc (X: cvt) returns (T)
signals (empty)
T rep$size() = 0 then signal empty

set[T]$ choose(s)
except when empty: ...

i Exception Handling

= Handling
= Propagating
= Shouldn’t happen
= The failure exception

= Principles
= Accurate interfaces
= Avoid useless code

‘L Iterators

m ForallxinCdoS

i Iterators

m ForallxinCdo S
= Destroy the collection?
= Complicate the abstraction?

i Visit to CMU

= Bill Wulf and Mary Shaw, Alphard
= Generators

i Iterators

sum: int :=0
e: int in Set[int]$members(s)
sum :=sum + e

* Iterators

Set = cluster[T] Is create, ..., members, ...

rep = array|[T]

members = iter (X: cvt) vields (T)
for z: T in rep$elements(x) do
yield (z) end

i After CLU

= Argus and distributed computing
= Type Hierarchy

i The Landscape

= Inheritance was used for:
= Implementation
= Type hierarchy

i Implementation Inheritance

= Violated encapsulation!

i Type hierarchy

s Wasn't well understood
= E.g., stacks vs. queues

The Liskov Substitution
i Principle (LSP)

= Objects of subtypes should behave like
those of supertypes If used via
supertype methods

s B. Liskov. Data abstraction and
hierarchy. Sigplan notices, May 1988

‘L Polymorphism

m Where T has ... vs.
s Where T subtype of S

= Proofs happen at different times!

i What Next?

= Modularity based on abstraction is the
way things are done

i Challenges

x New abstraction mechanisms?
= Massively Parallel Computers

= Internet Computer
» Storage and computation
= Semantics, reliability, availability, security

!'_ The Power of Abstraction

Barbara Liskov
October 2009

