
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2012-030 September 14, 2012

Aeolus Reference Manual
Barbara Liskov

Aeolus Reference Manual
Barbara Liskov

Contents

1 Introduction 3

2 Code Restrictions 5

3 Exceptions 7

4 Principals 7

5 Tags 9

6 Labels 10

7 Thread State 11

8 Virtual Nodes 12

9 RPCs 13

10 Shared State 14

10.1 AeolusShared . 15

10.2 Boxes . 16

10.3 Shared Queues . 17

10.4 Shared Locks . 18

10.5 User-defined Shared Objects 18

11 Safe Types 20

11.1 Safe Sequences . 23

12 Local Closures 24

13 Reduced-authority Calls and Forks 26

1

14 Files 27

14.1 Label Restrictions . 27

14.2 File Access Exceptions . 28

14.3 File Attributes and Name Space Management 29

14.4 Input File Streams . 30

14.5 Output File Streams . 31

15 Communication across a Deployment Boundary 32

16 Auditing 33

17 Setting Up a Deployment 34

18 Storage at the AS 35

2

1 Introduction

This document describes the interface that the Aeolus platform provides for
users who are implementing applications using Java. The document explains
how the Aeolus features are made available by means of a Java library.

The document assumes readers are already familiar with Aeolus (see [2]);
however we provide a brief overview here. Aeolus provides a DIFC (dis-
tributed information flow control) model in which tags are used to compart-
mentalize data. Each object (file, thread) has two labels, a secrecy label and
an integrity label, where a label is a set of tags. Information is allowed to
flow from a source to a target only if the target’s labels are at least as con-
strained as those of the source (i.e., the target’s secrecy label contains that of
the source, and its integrity label is contained in that of the source). Labels
of data objects are immutable but the labels of threads can change. Some
changes are safe (adding a tag to a secrecy label, removing a tag from an
integrity label) but others are not. The unsafe label manipulations require
authority, which resides with principals (PIDs). Each thread runs on behalf
of a principal, and a thread can perform the unsafe label manipulations only
if its principal has the proper authority: a tag can be removed from a secrecy
label (declassification) or added to an integrity label (endorsement) only if
its principal is authoritative for that tag.

Figure 1 shows an Aeolus deployment, consisting of a set of nodes that
run application code and a special node, called the AS, that stores the au-
thority state (the principals, tags, and information about what principals are
authoritative for what tags). Each node within the deployment runs appli-
cation code as one or more VNs (virtual nodes); in addition some nodes may
provide an Aeolus file system. Within a VN are many threads, and these
threads can communicate via our shared state mechanism.

Nodes within a deployment use DNS names to identify one another. Some
nodes may run an Aeolus file system as well as VNs; in this case the file system
is also identified by the DNS name of the node.

VNs can communicate using RPCs, and labels flow on these internal
communications. Communication with programs running outside of a de-
ployment can be accomplished through the use of Java sockets. In addition
threads can read and write files from external file systems and make use of
input/output devices using Java I/O. Labels do not flow on communications
that cross the deployment boundary, however, since we cannot vouch for
what happens to information outside of a deployment. Instead, we require

3

Internet

Aeolus

App App
...Auth.

Server
Aeolus

App

Figure 1: An Aeolus Deployment.

that writes to outside a deployment can be done only if the writer has a null
secrecy label, and reads from outside a deployment can be done only if the
reader has a null integrity label.

The Aeolus library is defined in edu.mit.csail.aeolus.API. The library pro-
vides the various classes that support Aeolus types, e.g., PIDs, tags, and
labels. In addition there is a special class, AeolusLib, that provides access to
thread state and to some other features of our system. For example, VNs are
created through a call to an AeolusLib method. AeolusLib is a class with no
constructor and only static methods.

In this document we do not use prefixes for Aeolus type names nor for Aeo-
lus exceptions, e.g., we talk about PID, rather than edu.mit.csail.aeolus.API.PID.
We also refer to certain Java types, such as List, without giving the name of
the library.

We begin in Section 2 with a discussion of the constraints that Aeolus
imposes on code of Java applications that run on the platform. Section 3
provides a brief discussion of the exceptions thrown by our platform. Sec-
tions 4 - 6 describe the basic concepts in the Aeolus model (principals, tags,
and labels) and Section 7 describes the AeolusLib methods used to access a
thread’s state. Subsequent sections describe other types provided by Aeolus
as well as other methods of AeolusLib.

Further documentation about the Aeolus interface and how to use Aeolus
can be found at www.pmg.csail.mit.edu/aeolus/.

4

2 Code Restrictions

Code that runs on Aeolus needs to satisfy certain constraints to ensure that
information leaks do not occur.

As discussed above (and in [2]), an application in Aeolus runs as one or
more VNs. All VNs at the same node run in the same process; that process
runs the Aeolus platform software on top of the JVM. Within a VN there can
be many concurrent threads; threads are created to handle incoming requests,
and additionally threads can be created explicitly by forks. Threads running
within a VN are allowed to share volatile state through our shared state
mechanism.

Our implementation approach provides good performance since we use
lightweight threads to carry out concurrent tasks rather than separate OS-
level processes. However because all threads within a VN run in the same
process, we have to ensure that no information flow errors occur as a result.

We provide this guarantee by limiting what application code can do. Our
restrictions are enforced by a combination of load-time checks, code rewriting,
and runtime checks. These techniques are applied in a way that does not
affect either the JDK nor the Aeolus classes, but they do apply to all code
loaded for an application.

We enforce the following restrictions when application code is loaded:

• No static variables. As mentioned all code within a VN runs in the
same process and therefore shares the same copy of the code. Static
variables would allow threads within at VN to share state without the
checking needed to ensure no information flow control violations.

• No use of native code except for approved libraries. At present only the
standard libraries are approved; additional libraries can be approved if
users request them and they are safe for use within Aeolus. We do
not plan to approve native code implemented as part of the application
itself.

• No application-defined class loaders (since otherwise we couldn’t rely
on our class loader to enforce the constraints).

• All subclasses of AeolusShared and AeolusSafe must satisfy the restric-
tions defined in Sections 10.5 and 11.

5

This checking is done either when a VN is launched (see Section 8) or later,
when code is loaded dynamically. If the checks fail at the time a VN is
being launched, the VN will not be created and the launch call will fail
with ClassNotFoundException. If the checks fail during dynamic loading, the
ClassNotFoundException is raised.

An additional restriction is:

• No use of synchronization except within certain immutable Java types
such as String, and within application classes that implement subtypes
of AeolusShared (see Section 10).

We prohibit synchronization because it can be used to violate information
flow control. Aeolus threads do share objects, e.g., those in shared state. We
ensure that calls to methods of these objects are safe because we check labels
for each use. However, if threads could synchronize on these objects, this
would create a covert channel.

We do not exclude code containing prohibited uses of synchronization.
Instead we rewrite the Java byte codes to remove such uses. In particular,
consider the byte codes generated for

synchronize (e) { stmt }
We rewrite this code to leave only the bytecodes for statement stmt. We also
rewrite code to remove uses of wait and notify.

Removing synchronization does not cause execution errors because we
exclude it only for code of objects that are “safe-to-share” as discussed in
Section 11, and for code of objects that cannot be shared; no synchronization
is needed for such objects.

Third, we enforce the following restrictions dynamically:

• No introspection since this allows breaking of abstraction barriers and
as a result can allow tainted information to become visible without
proper tracking.

• When a thread does output, its secrecy label must be null.

• When a thread does input, its integrity label must be null.

• No use of Java threads. All threads must be created through Aeolus, so
that we can provide each thread with its own information flow control
state and private heap.

6

We do this checking by using a custom Java SecurityManager, which allows
us to interpose our own code on every use of I/O, and on every fork. If a
constraint is violated, the attempt fails with a SecurityException.

In addition the Aeolus class loader rewrites the Java byte code to support
shared objects and closures, as discussed in Sections 10 and 12.

3 Exceptions

Many calls within Aeolus terminate with exceptions related to the particular
task being done. For example, if an RPC cannot be performed because there
is a problem communicating with the target of the call, the call terminates
with RpcException.

There are two exceptions that are thrown by many calls. InfoFlowCon-
trolException is thrown when a call fails because the caller’s labels don’t
satisfy an information flow control constraint, e.g., the caller’s secrecy label
is larger than that of the file on a file write. AuthorityException is thrown
when a thread lacks the authority needed to perform the call, e.g., cannot do
a declassification because the caller lacks authority.

All exceptions thrown explicitly by the Aeolus platform are subtypes of
AeolusException. AeolusException is a general failure exception that is raised
if an unexpected error occurs, e.g., inability to communicate with the AS. To
simplify the presentation, most specifications do not mention the possibility
of the call terminating with AeolusException; instead this should be assumed
as a possibility for most calls.

Aeolus exceptions have a string argument that explains in more detail
what happened.

4 Principals

Principals (PIDs) are the online entities that represent users with an interest
in security. One principal can act for another, meaning it can do all security
sensitive operations that the one it acts for can do.

Aeolus maintains a principal hierarchy (PH) to record the act-for rela-
tions. This is a directed acyclic graph where the nodes are PIDs. A link
from principal p1 to principal p2 means that p1’s authority has been dele-
gated to p2, and therefore p2 can act for p1. The PH is part of the authority

7

state, which records all information about allowed uses of authority for an
Aeolus deployment.

PID provides the following methods and constructors. Calls to PID meth-
ods and constructors that cause modifications to the authority state can be
called only if the secrecy label of the thread making the call is null; this re-
striction is needed to avoid the possibility of information flow leaks through
the AS.

PID(). If the thread’s secrecy label isn’t empty, throws InfoFlowCon-
trolException. If the thread’s PID is the public PID (which isn’t allowed
to act for any other PID), throws AuthorityException. Otherwise creates
a new principal and returns its PID; the caller’s principal acts-for the
new principal (i.e., there is a delegation link from the new principal to
the caller’s principal).

void actFor(PID p). If the thread’s secrecy label isn’t null throws In-
foFlowControlException. If the thread’s PID doesn’t act for this or if p
is the public PID, throws AuthorityException. If the link already exists,
does nothing. Otherwise adds a delegation link from this to p, allowing
p to act for this, except that if adding the link would cause a cycle in
the PH, the call fails with AeolusException.

boolean doesActFor(PID p). Returns true if this acts for p, else returns
false. This is a transitive test: this acts for p if there is a path of
delegation links from p to this.

void revoke(PID p). If the thread’s secrecy label isn’t empty, throws In-
foFlowControlException. If the thread’s PID doesn’t act for this, throws
AuthorityException. If there is no delegation link from this to p does
nothing else removes this link.

static PID getPublicPID(). This is a static method that returns the
public PID.

boolean equals(PID p). Returns true if p is the same PID as this else
returns false.

PID is serializable and cloneable.

8

5 Tags

Tags are used to compartmentalize information. Each tag has an associated
delegation graph that records which principals have authority for that tag.
A delegation graph is directed and acyclic. Each node is a principal; a link
from principal p1 to principal p2 indicates that p1’s authority for the tag has
been delegated to p2. When a tag is created its graph consists of a single
node containing the principal of the creating process. A call to the delegation
method, if successful, adds a link to the graph; the call will fail if adding the
link would cause a cycle to form in the graph. A call to revoke indicates a
specific link to remove from the graph.

The delegation graph together with the principal hierarchy determines
whether a thread has authority for a tag: the thread is authoritative for the
tag if its principal acts-for some principal that is a node in the delegation
graph of that tag.

There are two kinds of tags: supertags and subtags. If a principal is
authoritative for a supertag, it is also authoritative for all subtags of that
supertag. The relationship between a supertag and a subtag is determined
when the subtag is first created. We provide only a two-level hierarchy:
subtags are not allowed to have subtags.

The AeolusTag type provides methods to create and compare tags and
to grant and revoke authority for tags. Calls to AeolusTag constructors and
to methods that cause changes to the authority state are allowed only if the
caller’s secrecy label is null (to avoid information flow leaks through the AS).

AeolusTag(). If the thread’s secrecy labels isn’t empty, throws InfoFlow-
ControlException; if the thread’s principal is the public PID (which isn’t
allowed to be authoritative for anything), throws AuthorityException.
Otherwise returns a new top-level tag; the caller’s principal is authori-
tative for the new tag.

AeolusTag(tag t). If the thread’s secrecy label isn’t empty, throws
InfoFlowControlException; if the thread’s principal is the public PID,
throws AuthorityException; if t isn’t a top-level tag, throws AeolusEx-
ception. Otherwise returns a new tag that is a subtag of t; the caller’s
principal is authoritative for the new tag.

boolean isSubTag(AeolusTag t). Returns true if t is a subtag of this, else
returns false.

9

boolean isSuperTag(AeolusTag t). Returns true if t is a supertag of this,
else returns false.

boolean equals(AeolusTag t). Returns true if t is the same tag as this.

void delegate(PID p1, PID p2). If the caller’s secrecy label isn’t empty,
throws InfoFlowControlException. If the caller doesn’t act for p1 or p2
is the public PID, throws AuthorityException. If p1 isn’t a node in the
delegation graph for this, or if adding the link would create a cycle in the
graph, or some other error occurs, throws AeolusException. Otherwise
adds a delegation link from p1 to p2 to the graph for this, except that
if the link already exists, does nothing.

boolean hasAuthority(). Returns true if the caller is authoritative for
this.

boolean hasAuthority(p). Returns true if p is authoritative for this.

void revoke(PID p1, PID p2). If the caller’s secrecy label isn’t null, throws
InfoFlowControlException. If the caller doesn’t act for p1, throws Au-
thorityException. If there is no link from p1 to p2 in the delegation
graph for this does nothing else removes this link.

AeolusTag is serializable and cloneable.

6 Labels

Labels are sets of tags. They are used to record the confidentiality and
integrity of threads, shared objects, and files. Labels are provided via the
AeolusLabel type, with the following constructors and methods:

AeolusLabel(). Returns an empty label.

void addTag(AeolusTag t). Adds t to this.

void removeTag(AeolusTag t). Removes t from this.

boolean isSubsetOf(AeolusLabel l). Returns true if this is a subset of l,
else returns false.

10

boolean equals(AeolusLabel l). Returns true if this contains the same
tags as l, else returns false.

boolean isEmpty(). Returns true if this is empty else returns false.

boolean hasTag(AeolusTag t). Returns true if t is a member of this; else
returns false.

AeolusLabel union(AeolusLabel l). Returns a new label that contains the
tags in this and the tags in l.

AeolusLabel intersection(AeolusLabel l). Returns a new label that con-
tains the tags that are in both this and l.

List<AeolusTag> members(). Returns the list of tags contained in this.

AeolusLabel clone(). Returns a new label object that contains the same
tags as this.

To understand label operations it is important to understand how labels
interact with compound tags:

• A label that contains supertag t is considered to contain all subtags of
t.

All the methods described above should be understood in light of this defi-
nition, e.g., hasTag(t) will return true if the label contains t or the supertag
of t, and if t is a supertag and the label contains one or more subtags of t,
then remove(t) removes these subtags.

Furthermore we use a “reduced” representation for labels: if a label con-
tains a supertag, t, it does not physically contain any of t’s subtags. Thus if
the members method is called on the label, t will be one of the tags in the
List, but no subtags of t will be in the list.

Labels are serializable and cloneable.

7 Thread State

Each thread has a security state consisting of its current principal and its se-
crecy and integrity labels. AeolusLib methods allow it to observe its principal

11

and to obtain copies of its labels. In addition a thread can modify its state,
but only by calling AeolusLib methods.

AeolusLib provides access to thread state through the following methods:

static PID getPID(). Returns the current principal of the thread.

static AeolusLabel getSecrecy(). Returns a copy of the thread’s secrecy
label.

static AeolusLabel getIntegrity(). Returns a copy of the thread’s in-
tegrity label.

static void addSecrecy(AeolusTag t). Adds t to the thread’s secrecy la-
bel.

static void declassify(AeolusTag t). Removes t from the thread’s secrecy
label provided the thread is authoritative for t; otherwise throws AuthorityException.

static void removeIntegrity(AeolusTag t). Removes t from the thread’s
integrity label.

static void endorse(AeolusTag t). Adds t to the thread’s integrity label
provided the thread is authoritative for t; otherwise throws AuthorityException.

8 Virtual Nodes

All computation in Aeolus occurs within VNs (virtual nodes). VNs are cre-
ated and destroyed by means of AeolusLib methods; in addition AeolusLib
methods are used to register a VN to provide a service (so that it can be
used as the target of an RPC), and to deregister a VN for a service.

• static void launch(String hostname, PID p, String appName, String appArg).
Launches a VN on the indicated host (the host is identified by its DNS
name), with the authority of p, provided the launch succeeds. The
launch fails under the following conditions: if the caller doesn’t act for
p, throws AuthorityException; if the caller’s secrecy label isn’t empty,
throws InfoFlowControlException; if the application class is not found
on hostname, throws ClassNotFoundException; if the main method isn’t
found in the application, throws NoSuchMethodException; if the code

12

doesn’t satisfy the code restrictions (see Section 2), throws ClassNot-
FoundException; if an exception is thrown by the main method, throws
InvocationTargetException; if there is a failure in communication with
hostname, throws RpcException; if the node isn’t a member of the de-
ployment or there is any other failure, throws AeolusException. The
thread that runs the main method runs with principal p, and starts
running with null labels; when it terminates its labels are merged into
those of the caller, whether it completes successfully or throws an ex-
ception.

• static void registerService(String serviceName, Class<?> serviceClass).
Registers this VN as providing the specified service, with the given
interface and name. This allows the service to be called via an RPC;
such a call will run with the VN’s authority. If there is already a
registration for this service at the VN’s node, it is superceded by the
new registration. To register a service the caller’s secrecy label must
be null; otherwise throws InfoFlowControlException. If serviceClass or
serviceName is null, throws NullPointerException.

• static void shutdown(). If the thread’s secrecy label is non-empty, throws
InfoFlowControlException. Otherwise shuts down the VN of the caller’s
thread and deregisters any services registered for it.

A launch starts up a VN at the designated hostname (the host is identified
by its DNS name); this VN will run with the designated principal, p. Launch
works as follows. Recall that all VNs at a node run in the same process.
Aeolus starts up another VN in this process at hostname and creates a thread
running with p’s authority within this VN. The thread runs the main method
of the application code, with appArg as its argument and empty labels. The
caller is delayed until the main method finishes running, and the labels of
the main method at this point are sent back to the launcher, where they are
merged with the launcher’s labels. (A merge is a union for the secrecy labels
and an intersection for the integrity labels.)

9 RPCs

RPCs can be made to methods of registered services. To make an RPC,
the caller must obtain a proxy object for the service by calling the following
AeolusLib method:

13

static Object getService(String hostName, String serviceName, Class<?> serviceClass).
Returns a service stub that implements the interface specified by ser-
viceClass, for use in making calls to the designated service on the des-
ignated machine (or this machine if the hostName is null).

The thread can then use the service stub to do RPCs. Typically the
caller will first cast the Object to the specified interface to make these calls
convenient.

For an RPC using a service stub to succeed, hostName must be the DNS
name of a member of the deployment (if hostName is null the call goes to this
machine so the check will succeed), some VN at that node must have regis-
tered for that service, with the indicated interface, and communication with
that node must succeed; otherwise the call terminates with RpcException.

If these conditions are all met, the registration service at hostName for-
wards the call to the VN that is registered for the indicated service. At the
VN, Aeolus creates a new service object, using the default constructor; since
this constructor takes no arguments, this means that there is no way the
service object can access pre-existing objects in the heap of its VN, except
through the use of shared state (discussed in Section 10).

Next Aeolus creates a new thread within the VN and calls the specified
method within that thread. This method is provided with copies of the
arguments (the arguments are serialized at the caller and deserialized at the
callee). The thread runs with the labels of the caller, but the PID of the VN.

If execution of the call terminates normally, the result of the call is sent
back to the caller (it is serialized at the callee and deserialized at the caller)
and the RPC terminates normally; if the execution of the call terminates
with an exception, the RPC terminates with java.lang.Exception. In either
case, the callee’s labels are merged with those of the caller and the caller
continues running with its own PID.

Aeolus provides special semantics for sending AeolusBox objects in RPC
messages as described in Section 10.2.

10 Shared State

Threads within a VN can share volatile memory through the use of shared
state. Shared state consists of one or more shared objects. Each such object
has secrecy and integrity labels; these labels are provided when the object is

14

created and cannot be changed afterwards. The methods of a shared object
can be called only if the thread and object labels allow the call.

Shared state objects can be thought of as residing in a special “shared
heap”. Objects in thread heaps can point to shared objects, and also objects
in the shared heap can point to other shared objects. However shared objects
cannot point to the heaps of the threads. In addition shared objects are “well
encapsulated”: it isn’t possible to have pointers from outside a shared object
to a non-shared object that is inside that shared object. These constraints
are enforced by copying arguments and results of calls to methods of shared
objects. These are deep copies, but they only go down to shared state objects,
since shared objects and thread heaps are allowed to refer to shared objects.
Furthermore, copying is avoided for “safe” objects as defined in Section 11.

Aeolus provides three types of shared objects (boxes, shared queues, and
shared locks). In addition, users can define new types of shared objects.

The shared heap has a root, which can be used by threads to find objects
within shared state. The root is undefined when the VN first starts running.
It can be accessed using the following AeolusLib methods:

• static void setRoot(AeolusShared x). Makes x the root of the shared
state provided the secrecy label of the thread making the call is null;
otherwise throws InfoFlowControlException.

• static AeolusShared getRoot(). If there is no root (because setRoot has
not been called previously at this VN), throws AeolusException. Oth-
erwise returns a pointer to the shared root object.

10.1 AeolusShared

Aeolus provides an abstract class AeolusShared that serves as the root of the
hierarchy of shared types. All shared objects are defined by classes that
implement subtypes of AeolusShared:

abstract class AeolusShared

AeolusShared provides two methods:

AeolusLabel getSecrecyLabel(). Returns a copy of the secrecy label of
the shared object.

AeolusLabel getIntegrityLabel(). Returns a copy of the integrity label
of the shared object.

15

Objects belonging to subclasses of AeolusShared can be created only by
calling constructors of the subclass. AeolusShared provides two constructors
for use within these subclasses:

protected AeolusShared(). Creates a new AeolusShared object with
copies of the labels of the caller.

protected AeolusShared(AeolusLabel s, AeolusLabel i). Creates a new Ae-
olusShared object with copies of the indicated labels provided the caller’s
labels are no more constrained than the indicated labels. Otherwise
throws InfoFlowControlException.

10.2 Boxes

Boxes are generic containers for arbitrary content:

• final class AeolusBox<T extends Serializable> extends AeolusShared
implements Serializable

with the following constructors and methods:

AeolusBox<T>(T content). Creates a new AeolusBox<T> object with
copies of the caller’s labels, and stores a copy of content in the box.

AeolusBox<T>(AeolusLabel s, AeolusLabel i, T content). Creates a new
AeolusBox<T> object with copies of the provided secrecy and integrity
labels and containing a copy of content, provided the caller’s labels are
no more constrained than those of the box; otherwise throws InfoFlow-
ControlException.

T get(). Returns a copy of the content of the box provided the caller’s
labels allow the read; otherwise throws InfoFlowControlException.

void put(T x). Copies x into the box provided the callers label’s allow
the write; otherwise throws InfoFlowControlException.

In addition, AeolusBox inherits the getSecrecyLabel() and getIntegrityLabel()
methods from AeolusShared.

When content is moved into a box or from a box, it is copied. This copy
goes down to any shared objects that are reachable from the object being
copied.

16

Boxes can be used as arguments and results of RPCs, but this is done in
a special way that hides the content: both the box content and the labels
are sent in the message, and the box is reconstructed automatically at the
recipient. This allows contaminated content to be passed through interme-
diaries without their becoming contaminated. The content is inside the box
and inaccessible until it is copied out of the box (by calling the get method);
the copier becomes contaminated at that point.

10.3 Shared Queues

Shared queues are used for communication among the threads within a VN:

final class AeolusQueue<T> extends AeolusShared

Queues have the following constructors and methods:

AeolusQueue<T>(). Creates a new empty AeolusQueue<T> object,
with copies of the caller’s labels.

AeolusQueue<T>(AeolusLabel s, AeolusLabel i). Creates a new empty
AeolusQueue<T> object, with copies of the indicated labels. The
caller’s labels must be no more constrained than the indicated labels;
otherwise throws InfoFlowControlException.

void enqueue(T x). If x is null, throws NullPointerException; if the caller’s
labels don’t allow the write, throws InfoFlowControlException. Other-
wise copies x onto the top of the shared queue; the copy is a complete
copy down to shared objects.

T dequeue(). If the caller’s labels do not match those of the queue,
throws InfoFlowControlException. Otherwise waits for the queue to be
non-empty; then removes and returns the oldest entry on the queue.

T dequeueNoWait(). If the labels of the caller do not match those of the
queue, throws InfoFlowControlException. If the queue is empty returns
null else removes and returns the oldest entry on the queue.

In addition queues inherit the getSecrecy() and getIntegrity() methods from
AeolusShared.

AeolusQueues are not serializable.

17

10.4 Shared Locks

Shared locks allow threads within a VN to synchronize:

final class AeolusLock extends AeolusShared

AeolusLocks have the following constructors and methods:

AeolusLock<T>(). Creates a new AeolusLock<T> object with copies
the caller’s labels. The lock is initially unlocked.

AeolusLock<T>(AeolusLabel s, AeolusLabel i). Creates a new AeolusLock<T>
object with copies of the indicated labels provided the caller’s labels
are no less constrained than the indicated labels. Otherwise throws
InfoFlowControlException.

void lock(). If the caller’s labels do not allow the write, throws In-
foFlowControlException. Otherwise, waits until the lock is available and
then locks it on behalf of the caller.

void unlock(). If the caller’s labels don’t allow the write throws In-
foFlowControlException. If the lock isn’t locked does nothing else un-
locks the lock.

boolean tryLock(). If the caller’s labels don’t match those of the lock,
throws InfoFlowControlException. Otherwise if the lock is available ac-
quires it and returns true else returns false.

In addition locks inherit the getSecrecyLabel() and getIntegrityLabel() meth-
ods from AeolusShared.

AeolusLocks are not serializable.

10.5 User-defined Shared Objects

Aeolus allows users to define new types of shared objects. For example a user
can define a shared hash table; this is convenient as a way to store session
state for currently active sessions.

Each shared object has a secrecy label and an integrity label and method
calls to access or modify the state of the object are allowed only when the
labels of the caller match those of the object exactly. We use this stringent

18

rule because we cannot know whether the method is a reader or a writer; the
rule ensures there is no information flow leak in either case.

The class defining the shared objects provides constructors and methods
to handle the access to the state of the shared object. There is no need to
worry about the label checking when defining such a class since this is taken
care of automatically by the Aeolus platform.

To illustrate what such a class might be like, we show the interface of a
simple hash table that provides a map from ints to values of some parameter
type. This class has the form:

final class SharedHT <T> implements AeolusShared

and here are specifications for some of its constructors and methods:

SharedHT(). Creates a new empty hash table of type SharedHT<T>
with the labels of the caller.

SharedHT(Label s, Label i). Creates a new empty hash table of type
SharedHT<T> with the indicated labels, provided the caller’s labels
are no more constrained than the indicated labels; otherwise throws
InfoFlowControlException.

void insert(int key, T value). If the labels of the caller do not match
those of this, throws InfoFlowControlException. Otherwise, adds the
key-value pair to this.

T getValue(int key). If the labels of the caller do not match those of
this, throws InfoFlowControlException. Otherwise returns the value as-
sociated with key or throws NotInException if there is no entry for key.

void remove(int key). If the labels of the caller do not match those
of this, throws InfoFlowControlException. Otherwise removes the pair
associated with key or throws NotInException if there is no entry for
key.

In addition the class inherits the getSecrecyLabel() and getIntegrityLabel()
methods from AeolusShared.

Shared objects can be running calls from different threads within their VN
concurrently. Therefore they must be implemented to manage this concur-
rency. To do this they can use the Java lock of their object. (As mentioned

19

in Section 2, other uses of Java synchronization are prohibited.) They can
also be implemented using AeolusLock or using various classes in the JDK,
e.g., SharedHT could be implemented using HashMap.

As mentioned earlier, shared objects cannot contain pointers to the heaps
of threads. We guarantee this constraint by copying all arguments of shared
object constructors and all arguments and results of calls to methods of
shared objects. These copies are deep copies down to any contained shared
objects (or safe-to-share objects as explained in Section 11).

Classes that implement shared objects must be final, may not contain
inner classes, and all instance variables must be private. We enforce these
constraints by load-time checking.

In addition, while a thread is running inside a shared object it is not
allowed to change the thread’s labels; this constraint ensures that any modi-
fications of the object state will respect the object’s labels, without the need
to do label checks when these modifications occur. Furthermore the code is
not allowed to do RPCs or forks, so that we only need to enforce the no-
changing-labels constraint within the thread running the method call. If the
thread makes a call that violates these constraints, the call terminates with
AeolusException.

We ensure proper checking of information flow control constraints by code
rewriting, done by the class loader, which wraps the calls of the user-defined
methods. The added code checks the labels. In addition, if the label checks
succeed the added code modifies the thread state so that the thread is con-
strained to not modify its labels or make RPCs or forks while running inside
the shared object; these constraints are removed when the method call re-
turns.

11 Safe Types

The previous section discussed the constraints on AeolusShared that are needed
to prevent information flow control violations:

1. Shared objects are“well encapsulated”: pointers from outside an AeolusShared
object do not point to non-shared objects that are inside that shared
object.

2. There are no pointers from shared objects to objects that belong to
threads.

20

These constraints are enforced by copying arguments and results on all
calls to methods and constructors of classes that implement subtypes of Aeo-
lusShared. The copies are deep copies down to any contained shared objects.

However copies are expensive and it is clear in some cases that they aren’t
needed. In particular if an argument or result is immutable, the copy isn’t
needed since sharing of an immutable object cannot lead to information flow
control violations. It’s true that such a pointer might allow one thread to
access an immutable object belonging to another thread. But this sharing is
safe: it provides no additional communication that wasn’t possible by using
a copy of the object instead. (There could be a covert channel through
synchronization on the object, but as mentioned in Section 2, we remove all
such synchroniztion code.)

Our platform avoids copying immutable types in both Aeolus (e.g., PID,
AeolusTag) and Java (e.g., int, String). In addition, Aeolus provides a way
for user-defined code to implement classes whose objects are safe-to-share
without copying. It does this by defining an interface, AeolusSafe, which is
used as a way to impose constraints on classes that implement its subtypes.
These constraints are as follows:

1. All instance variables must be final.

2. All instance variables must belong to types recognized as being safe-
to-share.

3. The class must not contain any inner classes.

The restrictions above are based on the notion of safe-to-share. This no-
tion is more inclusive than AeolusSafe, since certain Java types are recognized
as being safe-to-share. Figure 2 shows the hierarchy of the various types hav-
ing to do with sharing and safety. The figure mentions AeolusClosure; this
type is defined in Section 12. The type AeolusSequence is defined in Sec-
tion 11.1.

The constraints on AeolusSafe classes are checked by our class loader. The
class loader does not restrict the types of the instance variables to subtypes
of AeolusSafe but uses the more permissive rule of safe-to-share. Thus an
instance variable could be a String. In addition our platform examines calls to
methods of AeolusShared classes (and also AeolusClosure classes), and avoids
copying arguments and results that are safe-to-share.

An example of a safe class is a list class that adds an element to the list by
creating a new list that contains that element plus those that were already in

21

safe-to-share

AeolusSafe int Integer String
other built-in

types...

PID

AeolusTag

EventID

AeolusSequence

AeolusShared

AeolusClosure

user-defined
types...

AeolusBox

AeolusQueue

AeolusLock
user-defined

types...

user-defined
closures...

Figure 2: Hierarchy for types that are safe-to-share.

22

the list. Another example is a session class that maintains session state as a
tuple containing the principal and tag for that user, plus a shared object that
contains the current state of that session. Such a class can satisfy the rules
for AeolusSafe given above provided the instance variables are final, because
then any state changes are limited to modifications of the session-state shared
object.

A safe-to-share class can be generic. If the class has instance variables
whose type depends on a parameter, that parameter must be declared to
extend AeolusSafe, since this way those instance variables will be recognized
as safe-to-share by our class loader. If that parameter type extends more
than one type, AeolusSafe must be listed first, since only the first listed type
is retained in the bytecodes.

11.1 Safe Sequences

Aeolus provides an immutable AeolusSequence type that is safe-to-share:

• final class AeolusSequence<T extends AeolusSafe & Serializable>
extends AeolusSafe implements Serializable

Here is a partial specification of its constructors and methods:

AeolusSequence(). Returns a new empty sequence.

AeolusSequence(Collection<T> c). Returns a new sequence whose ele-
ments are those in c, in the order they occur in c.

T get(int i). If i is a legal index in this, returns the element at that
position, else throws IndexOutOfBoundsException.

int size(). Returns the size of this.

boolean equals (AeolusSequence<T> s). Returns true if the elements of
this and s are pairwise equals.

AeolusSequence<T> set(int i, T x). Creates a new sequence that is a
copy of this except that the ith element has been replaced with x. If i
is not a legal index in this throws IndexOutOfBoundsException.

AeolusSequence<T> add(T x). Returns a new sequence containing all
the elements of this, in their original order, followed by x.

23

AeolusSequence<T> remove(int i). Returns a new sequence containing
all the elements of this in their original order except that the ith element
has been removed. If i isn’t a legal index in this, throws IndexOutOf-
BoundsException.

AeolusSequence is generic, but since its parameter must be AeolusSafe we are
able to ensure that the restriction on the types of instance variables holds.
Of course this means that AeolusSequence<String> will not work; however
the programmer can implement a SafeString class to wrap the string and
AeolusSequence<SafeString> will be accepted by the class loader.

12 Local Closures

Reasoning about the security of applications is easier if the code follows the
principle of least privilege: running code with as little authority as possible
limits the places where data can be leaked, and thus reduces the amount of
code that needs to be inspected to ensure security.

Aeolus supports this principle by several mechanisms. VNs (which use
their own authority and cannot make use of the caller’s authority) are one
such mechanism. Local closures, which are discussed in this section, are
another, and reduced authority calls, which are discussed in Section 13, are
a third mechanism.

Local closures allow code to run with a different principal than that of
the caller. The principal is specified when the closure is created; this must be
done by a thread that acts-for the principal. Later, methods of the closure
can be called by a thread that doesn’t have this authority, yet the calls will
run with that principal.

Local closures are similar to VNs; they provide a way to bind authority
to code so that when the code runs, it runs with that authority, rather than
the authority of the caller. However, local closures exist within a single VN.

Local closures must belong to subtypes of AeolusClosure. AeolusClosure is
a subtype of AeolusSafe, and therefore the restrictions on such classes apply
here, e.g., instance variables must be final and their type must be a safe-to-
share type:

abstract class AeolusClosure implements AeolusSafe

. AeolusClosure has the following constructors and methods:

24

protected AeolusClosure(PID p). If the caller doesn’t act for p, throws
AuthorityException. Otherwise binds the new closure object to p so that
when it is called it will run with p’s authority.

PID getPID(). Returns the PID bound to this.

The class that implements the local closure defines the constructors and
methods that provide the closure behavior. The definer need not worry about
causing the method calls to run with the proper PID since this is handled
automatically by the Aeolus platform.

Arguments to closure method and constructor calls are copied using deep
copies down to any safe-to-share objects.

When a call is made to a method of a local closure, the thread switches to
running with the principal of the closure. When the call returns, the thread
switches back to the caller’s principal and the labels of the closure are merged
with those the thread had when it made the call (the merge is a union for the
secrecy labels and an intersection for the integrity labels). Thus the closure
can remove contamination it added, provided it has the authority, but it
cannot be used to remove contamination that already existed in its caller.

An example of a class that implements a closure is a class whose ob-
jects encapsulate information about company job offerings; a closure like this
would be useful in implementing a job service similar to what is provided by
monster.com:

final class CompanyClosure extends AeolusClosure

The class might have the following constructor and method:

CompanyClosure(PID p, Jobs j). If the caller doesn’t act for p, throws
AuthorityException. Otherwise, creates a new company closure bound
to principal p, and containing information about job openings in that
company.

JobList evalResume(Resume r). Returns a list of jobs that are matches
to the information in r.

Here Jobs might be a subtype of AeolusShared, and the argument j to the
constructor would have a secrecy label that includes the tag for that company.

The CompanyClosure method would be called while the calling thread is
contaminated with some tags for which the closure doesn’t have authority,

25

e.g., the caller’s secrecy label would contain the tag for the user whose resume
is being evaluated. The closure uses its own state to determine what to do;
in doing so the thread running the closure call becomes contaminated with
its own tag. Thus in this example the thread will be contaminated both by
the user-tag and the company-tag. When it is ready to return, the thread can
remove the company-tag using the closure’s authority; this way it provides a
result that its caller can use.

Since the closure does not have authority for other tags, e.g., the user-tag,
the thread running the closure call cannot remove them, and therefore it
cannot expose the information in its arguments. The thread could store this
information in a shared object or a file, but only if that object’s labels are no
less constraining than its own labels; thus the thread running a call on the
company closure could not store user resume information in a shared object
that doesn’t contain the user-tag. Furthermore, the thread cannot record
this information inside its own object, since this is immutable: a closure
class must implement a subtype of AeolusSafe. Therefore the closure call is
unable to leak information about the user resume.

Closures are not serializable and cannot be sent in messages.
As with subclasses of AeolusShared, we provide the proper semantics for

closure method and constructor calls by wrapping the calls. The wrapping
is done by the class loader by rewriting the Java byte code. In addition the
class loader inspects the code of the closure class to ensure it satisfies the
constraints imposed on classes that implement subtypes of AeolusSafe.

13 Reduced-authority Calls and Forks

This section describes reduced authority calls, a third mechanism that sup-
ports the principle of least privilege. Reduced authority calls allow a thread
to temporarily reduce its authority. For example, while running a third-
party statistics package that evaluates records for all patients in a clinic to
obtain epidemiological information, a thread can run with no authority, thus
ensuring that the patient data cannot be leaked by the code that does the
computation.

A thread can reduce its authority by using the following AeolusLib meth-
ods:

static <T> T call(Callable<T> x, PID p). Calls x.invoke() in the caller’s
thread to run with PID p and the current labels provided the caller acts-

26

for p; otherwise throws AuthorityException. If the call terminates with
an exception, throws java.lang.Exception. When the call finishes (either
normally or via an exception), switches back to the caller’s PID and
returns the result (in the case of a normal return).

Forks are done by a similar mechanism; we require the caller to specify
the authority explicitly, and often this will be less authority than what the
caller has. Forks are accomplished by calling methods of AeolusLib:

static void fork(Runnable x). Forks a new thread in the VN of the caller,
to run with the caller’s principal and copies of the caller’s labels. Copies
x into the heap of the new thread and then calls its run() method. This
is a full copy down to objects that are safe-to-share.

static void fork(Runnable x, PID p). Forks a new thread in the VN of
the caller, to run with PID p and copies of the caller’s labels, provided
the caller acts-for p; otherwise throws AuthorityException. Copies x into
the heap of the new thread and then calls its run() method. This is a
full copy down to objects that are safe-to-share.

A fork is executed as follows: a new thread is created, the Runnable object
x is copied into the heap of the new thread, and the call to the run() method
then happens in the new thread. If x is safe-to-share the cost of the copy can
be avoided.

14 Files

Each node within an Aeolus deployment can have a mounted Aeolus file
system, and thus an application running in the deployment can use these file
systems. A file system is identified by the DNS name of the Aeolus node
where it is mounted.

Aeolus files provide an interface based on the Java interface to files. How-
ever, files in Aeolus are labeled and uses of files are checked to ensure that
the information flow rules are obeyed. In addition we provide only a subset
of the methods that are present in the related Java type.

14.1 Label Restrictions

Every file and directory has a secrecy label and an integrity label. These
labels are defined when the file or directory is created and they are immutable.

27

When a file in a file system is first used, e.g., when it is opened for reading
or writing, the the pathname of the file has to be interpreted by reading all
the directories along the path. To ensure that the labels of the directories
allow pathname interpretation without errors, Aeolus imposes the following
constraints on labels:

1. Growing confidentiality. The secrecy label of a directory is contained
in the secrecy label of any file or directory that is an entry in that
directory.

2. Reduced integrity. For all non-root directories, the integrity label of
the directory contains the integrity label of any file or directory that is
an entry in that directory.

The constraints ensure that the integrity of the pathname is at least as good
as that of the file or directory named by that pathname. The constraints
also ensure that if a thread’s labels allow it to read a file, it will be able to
read the directories along the path to that file. For a write, the rules ensure
that there are thread labels that both allow the path to be read and the file
to be written: the thread’s labels must be no less constrained than those of
the file’s parent directory, and no more constrained than those of the file, but
such labels exist since the parent directory’s labels are no more constrained
than those of the file.

The constraints are enforced by having a special rule for directory mod-
ifications. A thread can modify a directory only if its secrecy label matches
that of the directory exactly; exact match is needed because when a thread
modifies a directory, it can read the directory, e.g., if the name selected for
the file being inserted is already in use, the thread will learn this. For a non-
root directory we also require exact match for the integrity labels, but we do
not require this for modifications of the root directory (since the hierarchy
constraint implies that the integrity label of the root directory contains all
possible labels). Instead when the root directory is modified we require that
the integrity label of the thread doing the modification must include that of
the file or directory being added or deleted.

14.2 File Access Exceptions

Calls to access files in Aeolus succeed only when certain constraints are satis-
fied; otherwise the call throws an exception. The constraints and exceptions
are as follows:

28

File system constraint. If the file or some parent directory doesn’t exist,
throws java.io.FileNotFound exception. If a failure occurs while com-
municating with hostname, throws AeolusException. If an error occurs
while reading or writing the file or some directory, or if an attempt
is made to use a file as a directory, or a directory as a file, throws
java.io.IOException.

Label constraint. If the thread’s labels don’t allow the requested opera-
tion, throws InfoFlowControlException. For a file or directory read, the
thread’s labels must be no less constrained than those of the file. For a
file write, the thread’s labels must be no more constrained than those
of the file and no less constrained than those of the parent directory.
For a directory write, the labels of the file being added or removed must
be no less constrained than those of the directory and the thread’s se-
crecy label must match the directory’s secrecy label. In addition, if the
modification is to a non-root directory the thread’s integrity label must
match that of the directory; if the modification is to the root directory,
the thread’s integrity label must include that of the file or directory
being added or removed.

In the following sections we do not mention these exceptions explicitly.

14.3 File Attributes and Name Space Management

Aeolus provides access to certain file attributes and also provides methods to
manage the namespace of a file system through the type AeolusFile. AeolusFile
has the following constructor:

AeolusFile(String hostName, String pathName). Identifies the file of in-
terest by providing its pathname and the file system that contains it.

The call to the constructor identifies the file of interest by indicating the
DNS name of the host where the file system that contains the file resides, and
the pathname of the file within that file system. Howevers the constructor
does not look up or access the file. Instead access happens when methods of
the AeolusFile object returned by the constructor are called, and it is at this
point that the pathname and label constraints are checked.

The AeolusFile methods are as follows; in all cases these calls throw ex-
ceptions if the file system constraint or the label constraint is violated:

29

AeolusLabel getSecrecy(). Returns the secrecy label of the file identified
by this, provided the file system constraint is satisfied and the thread’s
labels allow it to read the parent directory that contains the file.

AeolusLabel getIntegrity(). Returns the integrity label of the file iden-
tified by this, provided the file system constraint is satisfied and the
thread’s labels allow it to read the parent directory that contains the
file.

boolean createNewFile(AeolusLabel s, AeolusLabel i). Creates a new empty
file corresponding to the file identified by this, with the indicated la-
bels, provided the file system constraint and the label constraint for a
directory modification are satisfied. Returns true if the file is created;
if the parent directory already contains a file of the given name returns
false.

boolean mkDir(AeolusLabel s, AeolusLabel i). Creates a new empty di-
rectory corresponding to the pathname and file system identified by
this, with the indicated labels, provided the file system constraint and
the label constraint for a directory modification are satisfied. Returns
true if the directory is created; if the parent directory already contains
a file of the given name returns false.

String[] list(). Lists the names of entries in the file identified by this
(as entries in the result array), provided the file system constraint is
satisfied, the file exists and is a directory, and the thread can read
the directory. The names are relative to the name of the directory;
the pathname for the entry can be formed by combining the returned
name with the pathname of the directory. Returns null if the file isn’t
a directory.

boolean delete(). Deletes the file identified by this, provided the file sys-
tem constraint and the thread label constraint for a directory modifica-
tion are satisfied. Additionally if the file being removed is a directory,
it must be empty; otherwise throws java.io.IOException.

14.4 Input File Streams

Files can be read using the AeolusInputStream type. This type has the fol-
lowing constructor:

30

AeolusInputStream(String hostname, String filePath). Creates a file stream
for reading from the indicated file, provided the file system constraint
is satisfied and the thread can read the file.

An input file has a cursor associated with it. When the file stream is created
the cursor is at the first byte of the file.

Input file streams provide the following methods; in all cases these meth-
ods will throw exceptions if the file system constraint or the label constraint
is not satisfied.

int read(byte[] buffer). Reads buffer.length bytes of the file, or up to the
end of file, starting at the cursor, provided the thread’s labels allow the
read and the file system constraint is satisfied. Advances the cursor by
the number of bytes read and returns a count of the number of bytes
read, except that if a previous read encountered an end of file, returns
-1 and does not advance the cursor. If the stream is closed throws
java.io.IOException.

int read(byte[] buffer, int offset, int count). Reads count bytes, or up to
the end of file, starting at the cursor, into the buffer at the indicated
offset, provided the file labels allow the read and the file system con-
straint is satisfied. Advances the cursor by the number of bytes read
and returns a count of the number of bytes read, except that if a previ-
ous read encountered an end of file, returns -1 and does not advance the
cursor. If the stream is closed throws java.io.IOException. If the buffer
doesn’t have enough room to hold the number of bytes read, throws
IndexOutOfBoundsException.

void close(). Closes the file stream provided the file system constraint
is satisfied. After this point reads will fail. If the stream is already
closed, throws java.io.IOException.

14.5 Output File Streams

Files can be written using AeolusOutputStream. Output file streams also have
a cursor. When the stream is created, this cursor either points to the start
of the file, or if the file is opened in append mode, it points to the end of the
file.

AeolusOutputStream has the following constructor:

31

AeolusOutputStream open(String hostname, String filePath, boolean appendMode).
Creates an output file stream for writing to the indicated file provided
the file system constraint is satisfied and the thread can read the parent
directory and write the file. If append mode is on, the file cursor is set
to the end of the file; otherwise it is set to the start of the file.

Output file streams provide the following methods; in all cases these meth-
ods will throw the indicated exceptions if the file system constraint or the
label constraint is not satisfied:

void write(byte[] buffer). Writes buffer.length bytes from the buffer to
the stream starting at the cursor, and advances the cursor by the num-
ber of bytes written, provided the thread’s labels allow the write and
the file system constraint is satisfied. If the stream is already closed,
throws java.io.IOException.

void write(byte[] buffer, int offset, int count). Writes count bytes to the
stream from the buffer starting at the given offset, provided the thread’s
labels allow the write and the file system constraint is satisfied. If
the stream is already closed, throws java.io.IOException. If the buffer
doesn’t have count bytes starting at offset, throws IndexOutOfBound-
sException.

void close(). Closes the file stream provided the file system constraint
is satisfied. After this point the file cannot be written. If the stream is
already closed, throws java.io.IOException.

15 Communication across a Deployment Bound-

ary

Threads in VNs can communicate with programs running outside a deploy-
ment using Java sockets. In addition they can read and write external files
and devices using Java I/O.

However, communication across a deployment boundary is constrained.
We cannot vouch for the secrecy of information written to the outside of a
deployment; for this reason we allow output only if a thread’s secrecy label
is empty. Also, we cannot vouch for the integrity of data entered from the

32

outside; for this reason we allow input across a deployment boundary only if
the thread’s integrity label is empty.

The constraints on external communications are enforced by our custom
Java SecurityManager.

16 Auditing

Aeolus provides an auditing subsystem that logs all events having to do
with security. For example, each time a thread does a declassify or makes a
reduced authority call, this is logged.

Every event has an eventID and it indicates its immediate predecessor
events using their IDs. Almost all events have as one of their immediate
predecessors the previous event logged in the thread whose current event
is being logged. However some events have additional predecessors. For
example, when an entry is dequeued from an AeolusQueue, there are two
predecessors: the prior event in the thread running the dequeue, and the
event recording the enqueue of that entry.

Aeolus allows applications to log application-specific events in the audit
trail. This can be done by calling the following methods of AeolusLib:

static EventID createEvent(String appOp, List<String> appArgs). Adds
an event 〈”appEvent” pred appOp appArgs〉 to the audit trail as the next
event of the calling thread, where pred (the predecessor of this event)
is the previous event in the thread of the caller. Returns the EventID
of the new event.

static EventID createEvent(String appOp, String appArgs, List<EventID> eList).
Adds an event 〈“appEvent” 〈pred, eList〉 appOp appArgs〉 to the audit
trail as the next event of the calling thread. Here pred is the previ-
ous event in the caller’s thread, and elist is a list of other events that
are considered by the application to be predecessors of the event being
logged. Returns the EventId of the new event.

static EventID getEventID(). Returns the EventID of the most recent
event logged for the caller.

The appOp should uniquely identify the operation so that it can be dis-
tinguished from other application-level operations both in this application

33

and any others running in the deployment. appArgs provides additional
application-level information about the event being logged.

EventIDs are serializable and cloneable and can be tested for equality;
they have no other methods.

More information about auditing can be found in [4, 1, 3].

17 Setting Up a Deployment

The discussion in the previous sections assumes an Aeolus deployment exists
and its membership isn’t changing. This section describes how a deployment
starts and how membership changes. More detailed information can be found
at www.pmg.csail.mit.edu/aeolus/.

When an Aeolus deployment starts up, it consists of a single node on
which Aeolus has been installed and the AS (authority state) has been
started. This node runs with the root PID (which will act for all other
PIDs created by code running within the deployment). The authority state
is initially empty, and the audit trail exists and is also empty.

To add a new node to a deployment, the owner of the node must first set
up the node to run Aeolus, and must put the code of an initial VN on the
node. Then the owner starts Aeolus running on the node.

Aeolus sends a message to the AS informing it of the new node. The
AS adds the node to the deployment, creates a “node-root” PID for the new
node, and returns this PID to the new node. Then Aeolus starts up process
at the new node; as mentioned this process runs the Aeolus code on top of
the JVM, and all VNs at the node will run on top of Aeolus in this process.

Next Aeolus starts up a first VN; this VN runs the pre-loaded code with
the authority of the node-root PID. The code is first checked by our class
loader and the VN is created only if the check succeeds. In this case, Aeolus
creates a thread within this process and starts it running the main method.
The thread runs with the node-root PID and null labels.

In addition, if the node hosts a file system, the file system is mounted at
the node and an Aeolus process is created to handle interactions with the file
system; for details see [3].

It’s also possible to start up one VN at the AS through a command at
the console. When the AS was created, Aeolus also created the process at
the AS where VNs can run, but no VNs were created at this point. The
console command indicates the class that the single VN will run. This code

34

is checked by the class loader. If the check succeeds, Aeolus creates the new
VN and also creates a thread and starts it running the main method. This
VN runs with the authority of the root PID, and the thread runs with the
root PID and empty labels.

The only way to get more than one VN at a node is to use launch (see
Section 8).

The design of Aeolus calls for each node in a deployment to have a pub-
lic/private key pair that is used to allow encryption of messages exchanged
between the nodes in the deployment. However our current implementation
does not provide such encryption.

18 Storage at the AS

The authority state is stored in blocks at the AS. Each thread has a current
block; it can control which block is its current block using the following
methods of AeolusLib:

static void createBlock(). Creates a new block and makes it the current
block of the creating thread, provided the thread’s secrecy label is null;
otherwise throws InfoFlowControlException.

static void makeCurrentBlock(PID p). If the call returns normally, makes
the block that contains principal p be the current block. The thread’s
secrecy label must be null; otherwise throws InfoFlowControlException.
Also, the thread must act for p, else throws AuthorityException.

These calls can fail with AeolusException if there is a problem communicating
with the AS.

Newly created principals are stored in the current block and tags are
stored in the block of the PID that creates them. Delegations are stored in
a single block if the delegator and delegatee principals are in the same block.
Otherwise both blocks record information about the delegation.

When a thread starts running, its current block is the one that contains
its principal.

35

Further Reading

[1] A. Blankstein. Analyzing audit trails in the Aeolus security platform.
Master’s thesis, MIT, Cambridge, MA, USA, June 2011.

[2] W. Cheng, A. Blankstein, J. Cowling, D. Curtis, V. Popic, D. R. K. Ports,
D. Schultz, L. Shrira, and B. Liskov. Abstractions for usable information
flow control in Aeolus. In submission.

[3] F. P. McKee. A file system design for the Aeolus security platform.
Master’s thesis, MIT, Cambridge, MA, Sept. 2011.

[4] V. Popic. Audit trails in the Aeolus distributed security platform. Mas-
ter’s thesis, MIT, Cambridge, MA, Sept. 2010.

36

