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Abstract

We present a scalable garbage collection scheme for sys-
tems that store objects at multiple servers while clients run
transactions on locally cached copies of objects. It is the
first scheme that provides fault tolerance for such a sys-
tem: Servers recover from failures and retrieve information
needed for safe garbage collection; clients do not recover
from failures, yet the scheme is able to reclaim objects ref-
erenced only from failed clients. The scheme is optimized
to reduce overhead on common client operations, and it
provides fault tolerance by doing work in the background
and during client operations that are infrequent.

1 Introduction

This paper presents a scheme for distributed garbage col-
lection in a client-server object-oriented database system.
The algorithm is scalable and fault-tolerant, and minimizes
the overhead on common client operations.

The collector works in a system in which persistent ob-
jects are stored at geographically distributed servers, while
applications run on client machines and interact with the
system by invoking object methods. The method calls ac-
tually run at the client machines using cached copies of
objects, which are fetched from the servers as needed. The
method calls are grouped into transactions; when a client
commits a transaction, modified copies of objects are sent
back to the servers.

Persistence of objects is governed by reachability from
a designated root object; the collector must reclaim the
storage of objects that cease to be reachable. The scheme
collects all unreachable objects except those linked by cy-
cles of references that span multiple servers. It needs to be
augmented to collect cyclic distributed garbage; we ignore
the issue in this paper.

Authors’ email addresses: umesh,liskov @lcs.mit.edu.
This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136.

The algorithm avoids centralized mechanisms so that
it can scale to a large number of servers. Like other such
schemes, it employs a variant of distributed referencecount-
ing, but it differs in two important ways:

1. It is integrated with client caching and distributed
transactions. It is optimized to reduce overhead on
common client operations, especially object fetches,
by avoiding extra messages, processing, and stable
storage accesses.

2. It can tolerate both server and client failures. Servers
recover from crashes without loss of information; this
is achieved without updating stable information when
clients fetch objects. Clients do not survive failures,
yet the system is able to reclaim persistent objects
referenced only from failed clients. Communication
failures such as network partitions may cause some
servers to view a live client as failed, but the scheme
prevents dangling references at such clients from cor-
rupting persistent objects.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our system and states the requirements for
the collector. Section 3 describes our scheme for tracking
inter-node references. (We use the generic term node for a
client or a server.) Then we describe how the scheme works
in the absence of failures: Section 4 describes fetching ob-
jects into client caches, and Section 5 describes transaction
commits. Section 6 describes how server and client failures
are handled. Section 7 summarizes the space and time over-
heads of the scheme. We discuss related work in Section 8
and conclude in Section 9.

2 The environment

Our algorithm is designed for use in the Thor object-
oriented database system [LDS92]. Thor provides a uni-
verse of persistent objects stored at geographically dis-
tributed servers. The server where an object resides is
referred to as its owner. Objects contain references to other
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objects, which may reside at any server. Persistence is de-
termined by reachability from the persistent root, which is
implemented as a collection of persistent root objects, one
for each server.

The objects at a server are grouped into segments, which
are the units of transfer between disk and primary memory.
Objects are clustered so that objects that refer to one another
are likely to be in the same segment. A reference is a triple
owner-id, segment-id, index , which allows objects to be

located efficiently [DLMM93]. References are recycled
for pragmatic reasons: after an object is reclaimed, a new
object may be given the same reference.

User applications run on client machines and interact
with Thor by invoking object methods. Method calls are
grouped into transactions; the application specifies when
to commit or abort the current transaction. Applications
interact with Thor through a piece of Thor code that runs
on the client machine. This code, which we will refer to as
the client, executes the methods invoked by the application
using a cache of objects fetched from the servers. For
example, in Figure 1, the client has fetched objects and .
Method calls read and modify the cached copies of objects.
Note that object references may point from one server to
another or from a client to a server, but never from a server
to a client or from a client to another client.

X

X

Y

Z

root

Client C

Server S1

Server S2

Z

Figure 1: The client-server model.

To commit the current transaction, the client sends the
request to a server selected from the owners of objects used
in the transaction. Copies of objects modified during the
transaction are sent along with the request. A 2-phase com-
mit is needed for transactions that use objects at multiple
servers [Gra78, Ady94]. We outline the commit protocol
since it must be augmented to make garbage collection run
properly. The selected server acts as the coordinator; it
sends prepare messages to the owners of other used ob-

jects, called the participants. Each participant determines
whether the transaction can commit, and if so it responds
OK after possibly logging a prepare record on stable stor-
age. If all participants agree to commit, the coordinator
logs a commit record and notifies the client of a successful
commit. If some participants refuse to commit, or don’t re-
spond, the coordinator aborts the transaction. The second
phase of the commit protocol happens in the background:
the coordinator notifies the participants, whereupon they
commit the modified versions of objects. Future fetches
read the new versions from the log until they are installed,
overwriting the old versions.

When a new object is created, it appears in the client
cache as a volatile object. When a transaction commits,
any volatile objects that have become reachable from the
persistent root are sent to the coordinator; the objects then
become persistent at some preferred server.

Transactions are serialized using optimistic concurrency
control [KR81, Ady94]. Objects are not locked when
fetched by a client, so that other clients are free to fetch
and modify them. Modifications committed by one client
may cause objects cached by another to become invalid.
Servers attempt to keep client caches up to date; they track
which objects are stored at clients and, if these objects are
modified, send invalidation messages to the affected clients.
Invalidation is an optimization to prevent transaction aborts
that would be caused by reading stale data.

Object references never leave the Thor system: When an
application calls a method that returns an object, the client
code returns a handle, which can be used by the application
to refer to the object in subsequent calls. (Applications
begin their interaction with Thor by obtaining a handle to a
persistent root.) A handle is local to a client; for example, an
application cannot store it in a file and use it later to interact
with another client. This constraint is essential for garbage
collection since it guarantees that the only persistent objects
that matter are those that are reachable from the persistent
roots or from active clients.

Clients and servers have different fault-tolerance char-
acteristics. Servers are persistent and eventually recover
from crashes; they are replicated for high availability and
reliability [LGGJSW91]. Clients are temporary: they may
terminate either normally or due to a crash. Further, servers
cannot differentiate between client crashes and long term
communication failures like network partitions.

Our garbage collection requirements are as follows:

safety: Objects reachable from the persistent roots or
from active clients must not be reclaimed.

liveness: The non-reachable objects should be re-
claimed eventually.

It is worth noting that the safety requirement about active
clients is actually needed. For example, in Figure 1, client
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has a reference to persistent object . At the time it obtained
this reference, was reachable from the persistent root,
but while the reference resides in ’s cache, a transaction
committed by some other client may make unreachable.
Nevertheless, we cannot discard because may use it
later. In fact, may make it reachable from the persistent
root again.

3 The basic scheme: reference listing

Scalable distributed garbage collection schemes use vari-
ants of reference counting between separately traced re-
gions as pioneered by [Bis77]. Each node does local
garbage collections independently of other nodes. To avoid
reclaiming objects that are unreachable from the local roots
but are reachable from the global set of roots via other
nodes, each node keeps some form of reference informa-
tion for local objects that are referenced from other nodes.
Local collection uses the reference information as a root in
addition to its local roots. (In our system, the local roots are
the handles at clients and the persistent roots at the servers.)
Distributed garbage collection is responsible for updating
the reference information as objects are modified: when a
node acquires or drops a remote reference, the reference
information at that object’s owner is updated appropriately.

We use a variant of distributed reference counting that
we refer to as reference listing, in which each node tracks
the identities of the nodes that refer to its objects. A node

1 keeps, for every other node 2, a list of objects in 1

that 2 may refer to. We call the list the inlist for 2

at 1, denoted as IN 2 @ 1. In our system, clients do
not have inlists, while servers keep inlists for clients and
other servers. Similar schemes have been used before for
non-client-server systems [SDP92, BENOW93]; we have
adapted them to handle fetches and commits and to provide
the fault tolerance needed in our environment.

The scheme will never reclaim reachable objects pro-
vided it satisfies the safety invariant:

If node 2 refers to an object at 1, then is
in IN 2 @ 1.

To preserve the invariant, whenever a node acquires a new
remote reference, the owner must record it in the appropri-
ate inlist. Consider Figure 2, which shows node 3 sending

2 a reference to object at 1. In this context, we call
3 the sender and 2 the receiver. 2 or 3 must send an

insert message to 1 so that 1 can add to IN 2 @ 1;
furthermore, this insertion must be done before the refer-
ence can be used at 2.

The liveness requirement is that when a node no longer
refers to a remote object, that object must eventually be re-
moved from the inlist for that node at the object’s owner. A
node will discover that it has no more references to a remote
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 message
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Figure 2: A node acquires a new remote reference.

object as a result of a local collection. Unlike inserting
entries into the inlists, deletion can be done lazily. Syn-
chronous insertion and lazy deletion guarantee the safety
invariant.

There are two ways of removing entries from inlists. 2

may send a delete message to 1 for [BENOW93] or 2

may periodically send the complete list of references that it
holds for objects in 1 [SDP92]. We call the list the outlist
for 1 at 2, denoted as OUT 1 @ 2. Upon receiving
the outlist, 1 uses it to replace IN 2 @ 1 .

We use outlists because if an outlist message is lost,
the next one (sent after the next local garbage collection)
will automatically compensate for the loss. Thus, nodes
can exchange outlists in the background using unreliable
delivery. By contrast, failed delete messages must be re-
membered and retried. Further, delete messages require
that nodes maintain the set of outgoing remote references
stably so that the removal of such a reference can be de-
tected; outlists need not be recorded on stable storage.

Insert and outlist messages must still be delivered in
order: a late outlist message that is reordered behind a more
recent insert message must be rejected. This is achieved by
simply numbering the messages.

Reference listing has two important advantages over
other variants. First, it tolerates message failures: Insert
and delete/outlist messages are idempotent, in contrast to
the increment or decrement messages in referencecounting,
and therefore can be retried on failure. Second, it tolerates
client crashes. A server creates an inlist for a client when
the client first fetches an object from it. We refer to this as
the opening of a session between the client and the server.
The client can close a session whenever it has an empty
outlist for the server or when it terminates. When a client
crashes, the server simply discards the inlist for it. With
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reference counts, a server cannot figure out which counts
to decrement locally; it needs global information to detect
garbage objects referenced by failed clients.

Reference listing requires more space than other vari-
ants but has an efficient implementation in our system,
assuming clustering of objects in segments (see Section 2)
corresponds well to application behavior. If a list contains
a large number of references from a segment, we replace
those references with a bit vector for the entire segment; if
the ’th bit in a vector is set, it indicates that the object with
index in the segment is referenced in the list. Because
of the clustering assumption, a list will consist primarily of
a few bit vectors, one for each segment that is frequently
referenced. Further, the bit vectors are small because object
indices are small numbers that are reused when objects are
deleted.

The interaction between local and distributed collections
is shown in Figure 3. Local collection starts tracing from
the local root and the inlists and generates new outlists,
while the distributed collection uses the outlists to replace
the corresponding inlists. In the remainder of this paper, we
ignore local collection and focus on distributed collection.

N1

IN(N2)

OUT(N2)
root

Distributed GC

Local GC

N2

IN(N1)

OUT(N1)

root

Local GC

Distributed GC

Figure 3: How local and distributed collections interact.

4 The fetch operation

This section describes what happens when clients fetch
copies of persistent objects. It ignores failures, which are
discussed in Section 6. We begin by describing a simple
scheme, and then discuss two important optimizations.

When a client fetches objects from a server, the server
records each fetched object in its inlist for the client. It
then scans the fetched objects to record all local references
contained in them as well. When the client receives the
objects, it checks for inter-server references contained in
them; if the client did not already have such a reference, it
sends an insert message to the owner. The owner records
the reference in its inlist for the client and sends an ac-
knowledgment. This is illustrated in Figure 4, where the
client fetched an object, , which contains a local reference,

, and a remote reference, .
After a client completes local collection, it sends its
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Y
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root
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Figure 4: Fetching an object that contains references.

outlists to the servers, which use them to replace their inlists
for the client. This is prone to a race condition: the outlist
might not include recently fetched objects that had not yet
arrived at the client when it computed the outlists. The
problem is solved by requiring the client to delay sending
its outlists until all outstanding fetches are complete, and
then adding all new references to the outlists before sending
them.

This scheme is correct since it preserves the safety in-
variant. However, sending insert messages and processing
references contained in the fetched objects delay the fetch.
The following sections describe two optimizations to avoid
this delay.

4.1 Indirect protection

A client can avoid sending an insert message to the owner
of an inter-server reference contained in a fetched object,
because the reference is already secured by the owner’s
inlist for the sender server. For example, in the scenario
shown in Figure 4, is already secured by IN 1 @ 2,
because 1 has object that refers to . But we need to
ensure that OUT 2 @ 1 contains at least as long as the
client holds a reference to it — even if is modified in
the meantime to drop the reference. We achieve this by
recording in IN @ 1 at the time of the fetch, even
though 1 does not own . That is, the server records all
references contained in fetched objects, local as well as
remote. The situation is shown in Figure 5.

In effect, the sender secures the reference to the object
at the owner on behalf of the receiver (the client). We
refer to this scheme as indirect protection. The schemes
used in [Piq91, SDP92] are similar, but implemented dif-
ferently. Indirect protection is safe because it maintains a
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Figure 5: Indirect protection to avoid the insert message.

more general form of the safety invariant:

If a client refers to an object at server 2,
either is in IN @ 2, or there exists a server 1

such that is in both IN @ 1 and IN 1 @ 2.

For this scheme to work, the client must remember that
it got a reference to from 1 and include in its outlist
for 1, so that 1 does not remove from IN @ 1 on
receiving the outlist. If the client has received a reference
from several servers, it needs to record the reference in only
one of the outlists.

4.2 Lazy scan

Recording references contained in the fetched objects de-
lays the fetch. We can avoid recording the contained refer-
ences because the fetched objects are secured against local
collection at the server, and they in turn secure the refer-
ences contained in them. However, this holds only until a
fetched object is modified: when a reference is removed
from a fetched object, we must ensure that it is recorded in
the inlist.

The lazy scan scheme avoids scanning objects at fetch
time. When the client does the next garbage collection
and the server replaces its inlist with the outlist sent by
the client, all contained references actually in use at the
client are automatically added to the inlist. However, if
a fetched object is modified before this point, the server
must explicitly record the references contained in the old
version in the inlist. This is accomplished by splitting each
inlist into a scanned and an unscanned part. At fetch time,
the server records the fetched objects in the unscanned
inlist. When the server receives an outlist from the client,

it clears the unscanned inlist and uses the outlist to replace
the scanned inlist.

When an object is modified as the result of committing a
transaction, its old version secures any contained references
until the new version is installed. (The local collector must
trace from both the old and the new versions until then.)
Before installing the new version of an object, if the object
is present in the unscanned inlist for any client, the server
records the references contained in the old version in the
scanned inlist for that client; the server also moves the entry
for the object itself from the unscanned inlist to the scanned
inlist.

The probability that a new version will be installed for
a recently fetched object (in the unscanned inlist) is likely
to be small, assuming that the clients do garbage collection
and send outlists fairly frequently. Therefore, lazy scanning
reduces the server load in addition to reducing fetch latency.
Scanning old versions may delay the installation of the new
versions, but installs are infrequent and are done in the
background.

To see why lazy scanning is safe, we define the closure
of a client inlist as the union of the sets of references in
the scanned and unscanned inlists and the references con-
tained in the currently installed versions of objects in the
unscanned inlist. Lazy scan maintains the following safety
invariant:

If a client refers to an object at server 2 , then
either is in the closure of IN @ 2, or there
exists a server 1 such that is in the closure of
IN @ 1 and in IN 1 @ 2.

5 The commit operation

The commit operation may create new persistent objects.
A server assigns references to its new persistent objects and
records those references in its scanned inlist for the client.

The commit operation may also create new inter-server
references. Consider Figure 5, where the client fetched

from 1, thus obtaining a reference to at 2. Figure 6
shows a possible later state of the system: the client fetched

from 3 and copied a reference to into . The client
then committed the modification, changing at 3. In
effect, the client has sent a new remote reference to 3.

The basic reference listing scheme requires that the
server receiving a new remote reference, 3, send an in-
sert message to the owner of the object, 2. Note that the
client already has an entry for in its outlist for the original
sender, 1, which in turn has an entry in its outlist for the
owner. We could use the indirect protection scheme to sup-
press the insert message: the client and the original sender
could secure the reference on behalf of the receiver, 3.
Unfortunately, this does not tolerate the temporary nature
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Figure 6: Commit transfers a remote reference.

of clients: When the client terminates, the indirect protec-
tion disappears. In fact, the client could crash immediately
after sending the commit request.

Thus, an insert message needs to be sent to a server that
can secure the reference, such as the original sender, 1, or
the owner, 3. Our scheme sends an insert message to the
owner. The insert message must be sent during phase 1 of
the commit protocol, so that the transaction can be aborted if
the message fails. An abort annuls the modifications made
by the transaction, which avoids the danger of creating a
dangling reference in the persistent store.

A straightforward way to incorporate insert messages in
phase 1 is described below and illustrated in Figure 7:

1. The coordinator sends prepare messages containing
modified copies of objects to the participants.

2. A participant searches for newly acquired remote ref-
erences in the modified objects and sends insert mes-
sages to their owners. (A participant can tell whether
a remote reference is new by looking in its outlist for
the owner.)

3. An owner records the references in its inlist for the
participant and sends an acknowledgment to the coor-
dinator.

4. The participant informs the coordinator (in its ac-
knowledgment message) that the owners are new par-

Owner S2Participant  S3 (receiver)

Coordinator S3

prepare ack

insert

ack

ZW

Figure 7: Insert message as part of the commit protocol.

ticipants in the transaction.

5. The coordinator waits for acknowledgments from the
original and the new participants. (Actually, each
acknowledgment carries information about the work
completed by the participant, and the coordinator waits
for each participant to complete all work expected of
it.)

If an insert message to an owner fails, the coordinator will
not receive an acknowledgment from it, and the transaction
will abort as desired.

Commits that involve insert messages thus have an added
latency of one additional message. [Mah93] describes a
scheme that hides this latency by having the coordinator
send the insert messages on behalf of the participants in
parallel with the prepare messages. However, this tech-
nique has drawbacks of its own — it complicates the in-
order delivery of insert and outlist messages, and may send
unnecessary insert messages since the coordinator does not
know which remote references already exist at the par-
ticipants. We expect that commits in which participants
acquire new remote references are relatively rare so that
adding a one-message delay to such commits does not de-
grade the performance enough to merit a more complicated
scheme.

6 Failures

As mentioned, servers are persistent and recover from
crashes, while clients are temporary and may terminate
normally or crash. Below we discuss how server and client
failures are handled.
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6.1 Server crash recovery

When a server recovers from a crash, it must retrieve all
its inlists before doing a local collection. The server keeps
its inlists for other servers on stable storage; it updates
the stable information in response to insert messages from
other servers during phase 1 of the commit protocol. As
discussed in Section 5, inserting into a server inlist is a
relatively rare occurrence; further, the stable update of the
inlist happens in in parallel with the logging of the prepare
record at other participants.

If the server were to store inlists for clients on stable
storage, each fetch request would be delayed by a write
to stable storage — a significant price to pay. Therefore,
servers retrieve client inlists by communicating with their
clients instead. When a server opens a session for a client,
it records the client’s id and net-address in its client-list
on stable storage. This makes opening sessions relatively
expensive, but such events are expected to be rare.

Thus, when a server recovers from a crash, it knows who
its clients are. It sends query messages to them asking them
to send it their outlists, and does a local garbage collection
only after it has restored the inlists of all its clients. This
raises a question: What happens if one of its clients does
not respond to query messages? We address this issue in
the next section.

To close a session, the client sends a message to the
server, which then removes the client from its client-list.
The client does not wait to ensure the delivery of a close-
session message: The message may fail to arrive either due
to network failure or because the server had crashed at the
time. The failure of close-session messages is equivalent
to the case when the client crashes without notifying the
servers, which is discussed below.

6.2 Client failures

Servers need to discard inlists for clients that appear to
have failed, since they would otherwise be unable to collect
garbage objects that were referenced by such clients. If
a client has not communicated for a long time and does
not respond to repeated query messages, servers assume it
has failed. However, a client that appears to have failed
may not have crashed; instead it might just be unable to
communicatewith the server becauseof a network partition.
In this case it may hold references to deallocated objects,
and these references must be prevented from corrupting
persistent objects at other servers.

One solution is for servers to never reuse references as-
signed to deleted objects, as in [BENOW93]. This would
allow the owner of a reference to detect whether the refer-
ence is invalid by checking if the referenced object exists.
Owners need to perform this check on receiving insert mes-
sages to prevent dangling references from entering server

objects. We rejected this scheme because of its expense:
in addition to the cost of the check, it precludes the use
of small and efficient references [DLMM93]. Reuse of
references allows us to use small references that contain
information to locate objects efficiently, and to avoid main-
taining information about deleted objects; note that in a
long-lived system like ours, there can be a large number of
deleted objects.

Note that the problem can be solved trivially in a single-
server system: Since a client must open a session with the
server before using it, a server rejects any request from a
client for which it has no session information. However,
when there are multiple servers, one server might assume a
client to have failed while another server does not. When
the first server discards its inlist for the client, it might
cause the second server to reclaim an object that it had
indirectly secured on behalf of the client. (The problem
arises because of our use of indirect protection to suppress
the insert message.) Now, if the client tries to fetch that
object from the second server, the server would not know
whether the reference is stale, i.e., refers to a deleted object
whose reference may have been reused. Also, the client
could commit a transaction that inserts stale references into
objects at the second server. Therefore, we employ an
atomic shutdown protocol, which ensures that all servers
get a consistent view of a client’s status.

When the client first starts up, it sends a startup message
to some preferred server, such as the one containing the
persistent root used by its application. The server assigns
the client a globally unique id, records it in the stable client-
list, creates an inlist for the client, and returns the id to the
client. This server acts as the reliable proxy for the client;
it will always know whether the client has been shut down
or not. It also tracks the servers that have open sessions
with the client: it stores a stable server-list for each client
for which it acts as a proxy. All requests sent by the client
include the identity of the proxy server. When the client
terminates normally, it notifies the proxy, which discards
the related information.

Before a server (say, 1) opens a session for a client, it
sends a query message to the client’s proxy to determine
the status of the client, as shown in Figure 8. If the proxy
believes the client is live, it adds 1 to the stable server-list
for the client and responds OK. Otherwise, it tells 1 that
the client has been shut down. If the proxy validates the
client, 1 opens a session as described before except that it
also records the id of the proxy in the client-list.

If later 1 is unable to communicate with the client,
it asks the client’s proxy to initiate a shut down. If the
proxy does not have any information about the client, it
tells 1 that the client has terminated (this could happen,
for instance, if the close-session message sent from the
client to 1 failed to arrive). Otherwise, the proxy carries
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Figure 8: Servers contact proxy before opening sessions.

out a 2-phase shutdown protocol:

1. In phase 1, the proxy notifies all servers in the server-
list of the client to shut it down.

2. The servers flag the client as dead (on stable storage)
and send an acknowledgment. They do not discard the
client’s inlist yet, but merely agree not to honor any
further requests from the client.

3. When all servers have acknowledged, the proxy sends
out phase 2 messages.

4. The servers remove the client from their client-list and
discard the client’s inlist. The proxy also discards all
information about the client.

If any server is temporarily unavailable during phase 1 of
the protocol, the proxy simply waits, which is acceptable
because servers are expected to recover from failures and
survive partitions. If a server doesn’t receive the phase 2
message, it can ask the proxy to do the shut down again;
this allows the protocol to be robust even if the proxy fails
during phase 1.

The 2-phase protocol guarantees the shutdown invariant:

No object referred to by a live client is reclaimed
until all servers with sessions for that client know
that it has been shut down.

No server will honor requests from the client after it is shut
down: servers it had sessions with know about the shut
down by then (or will find out when they recover from a
failure), and other servers will be unable to start up sessions
for the client. Therefore, the stale references held by the
client are harmless. In particular, transaction commits will
not transfer stale references into persistent objects: Since

the coordinator must have a session with the client, it will be
notified of the shut down before any object referred to by the
client is reclaimed. The coordinator aborts a transaction if it
is notified of the shut down at any time before it commits the
transaction. Thus, if a transaction commits, it is guaranteed
that no object referred to by the client was reclaimed by
then.

We now address the question left unanswered at the end
of Section 6.1. If a server recovering from a crash is unable
to recover the inlist of a client in its client-list, it asks the
proxy to initiate a shut down. The recovering server must
wait until phase 2 of the shutdown protocol before doing
a local collection; this is needed to preserve the shutdown
invariant.

7 Performance

Table 1 summarizes the data structures required at the
servers. (Note that a portion of the client inlist is already
needed for other purposes such as cache invalidation.) Ta-
ble 2 summarizes the overhead on the latency of client
operations in terms of the number of extra stable storage
writes and extra messages due to distributed garbage col-
lection. The extra message for commit is needed only in
the case where a server acquires a new remote reference.
Note that the numbers represent the latency of the opera-
tion and therefore discount stable writes and messages that
happen in parallel. For example, in the commit operation,
the insert messages are sent in parallel and account for the
latency of one extra message; the stable storage writes at
the owners happens in parallel with the logging of the pre-
pare records at the participants, and the acknowledgments
from the owners overlap with those from the participants.

data structure at server storage

inlist for each client volatile
inlist for each server stable
outlist for each server volatile
client-list stable
server-list for each “proxied” client stable

Table 1: Space overhead at server.

client operation #stable writes #messages

startup at proxy 1 0
open-session 2 2
fetch 0 0
commit with insert 0 1

Table 2: Overhead on client operations.

8



8 Related Work

Distributed garbage collection techniques fall into two cat-
egories, global marking and distributed reference counting.
Global-marking traverses the entire object graph from the
roots, sending marking messages to span remote references
[HK82]. Such schemes do not tolerate node crashes; fur-
ther a global sweep over large numbers of nodes each with
large storage does not allow timely collection of garbage.

Most scalable systems therefore use some variant of dis-
tributed reference counting [Bis77]. The variants differ
in the information kept for incoming remote references.
Some schemes only record a flag for remotely referenced
local objects [Ali84, JJ92]. Although this approach min-
imizes the reference information, it cannot detect locally
when an object ceases to be referenced remotely.

Other schemes record a count of how many external
nodes have references to an object [Ves87]. These schemes
can detect when an object is no longer remotely referenced,
since the count is incremented or decremented as nodes ac-
quire or drop the reference. The increment and decrement
messages must be sent reliably — without duplication, loss,
or reordering. Most of the research in the area has focused
on how to avoid the extra messages [Bev87, Piq91]; these
schemes do not address node failures. [MS91] uses a com-
bination of a referencecount and a bit per client for remotely
referenced objects to handle crashes.

[SDP92] uses reference listing and outlist messages.
Nodes use a form of indirect protection to suppress in-
sert messages. When a node terminates abnormally, other
nodes cannot discard their inlists for it because that might
cause indirectly protected objects reachable from live nodes
to be reclaimed. The fixes suggested involve either a global
mechanism or indefinite retention of garbage. The model
does not consider nodes that recover from crashes.

[BENOW93] uses reference listing for a model similar to
that of [SDP92], but takes the opposite approach. It sends
synchronous insert messages rather than have temporary
nodes provide indirect protection. When a node crashes,
its inlists at other nodes are discarded. As in our scheme,
the inlist for a live but uncommunicative node might be
discarded; the use of stale references by such nodes is
detected by not reusing object references. The model does
not consider persistent nodes.

[LL92] uses a logically centralized service that tracks
all inter-node references. Nodes inform the service of their
outgoing references and references in transit to other nodes.
They also query the service about the reachability of their
remotely referenced objects. One drawback of this scheme
is that the service may become a bottleneck in a scalable
system.

The only other scheme we know of that caters to client-
server database systems is [YNY94]. The model involves

multiple clients and a single server, and the paper focuses
on the various alternatives for local collection at the server.

Variants of distributed reference counting do not col-
lect distributed cyclic garbage. There are two approaches
to handling this problem. One is to use complementary
global marking [JJ92]. [Hug85] propagates timestamps
instead of marks so that multiple rounds of marking and
collection proceed simultaneously. [LQP92] uses marking
within groups of nodes so that a cycle of garbage can be
collected by a group that includes the nodes on which the
cycle resides. The second approach is to migrate objects
unreachable from local roots to the node from which they
are referenced. The scheme meshes well with reference
listing because that provides information about which re-
mote nodes reference a local object. This approach was
originally proposed by [Bis77] and is used in [SGP90].

9 Conclusion

This paper has described a distributed garbage collection
scheme for a client-server object-oriented database. Like
other scalable schemes, our scheme is a variant of refer-
ence counting, with the difference that it is integrated with
client caching and distributed transactions. The scheme
is optimized to reduce the overhead on object fetches by
clients. As shown in Table 2, it trades off delay in fetches,
which happen frequently, for delay in startup and open-
ing sessions, which happen rarely. The work involved in
lazy scanning at install time, close-session, and shutdown,
happens in the background and does not delay the client.

In addition, the scheme tolerates server and client fail-
ures. When a server recovers from a crash, it retrieves its
client inlists by contacting the clients rather than by storing
the inlists stably, which would delay the fetches. When a
client appears to have failed, the servers execute an atomic
shutdown protocol that provides a consistent view of the
client’s status. If the client had not actually failed, but was
merely unable to communicate, the protocol guarantees that
it will be unable to use its references once it has been shut
down, and therefore it will be unable to corrupt persistent
objects.

Like all schemes based on distributed reference count-
ing, ours is unable to collect objects on inaccessible, dis-
tributed cycles. We are currently investigating extensions
to handle this problem.
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