Disk Management for Object-Oriented Databases
(Student Paper)

Sanjay Ghemawat *
(sanjay@lcs.mit.edu)
MIT Laboratory for Computer Science

March 1, 1994

An object-oriented database provides persis-
tent storage for a large number of objects.
These objects may be very small, and the
access patterns are likely to be not as uni-
form as the mostly sequential reads and writes
seen in file-systems [1]. For example, the
007 benchmark for object-oriented databases
specifies a number of traversals that fol-
low pointers around a graph of objects [2].
Given these differences between file-systems
and object-oriented databases, disk manage-
ment techniques used in file-systems will not
perform well if naively applied to object-
oriented databases.

In this paper I propose three disk manage-
ment strategies for object-oriented databases.
These strategies are based on earlier work on
file-systems. They differ from this earlier work
in their support for a large number of small
objects and non-sequential access patterns.

1 Background

Object-oriented databases are usually built
around a transaction system because most
meaningful database operations require read-
ing and writing multiple objects. The pro-
posed strategies exploit the feature of trans-
actional systems where modifications do not
have to be made persistent until transaction-
commit. Techniques similar to the ones pro-
posed here could be used in a system without
transactions if modifications do not have to
made persistent at once, but can be buffered

*This research was supported in part by the Ad-
vanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research un-
der contract N00014-91-J-4136 and in part by the Na-
tional Science Foundation under Grant CCR-8822158.

in memory for short periods of time. (The
thirty second write delay in some file-systems
is an example.)

The rest of this section contains a brief de-
scription of techniques used in various disk-
based systems that have been adapted to fit
into the proposed disk management strategies.

1.1 Caching

Many systems cache data in volatile memory
to reduce the number of disk accesses required
to satisfy read requests. Caching can vastly
improve read performance. However, for reli-
ability reasons, modifications have to be made
persistent at transaction commit and therefore
caching does not directly affect write perfor-
mance.

1.2 Clustering and Prefetching

Disks tend to perform rather poorly if the unit
of transfer between disk and memory is small.
Much higher disk throughput can be achieved
by reading and writing large amounts of data
in one disk operation. Therefore if certain ob-
jects are likely to be read together, these ob-
jects can be stored contiguously on disk and
can be read into the cache in one disk opera-
tion. This technique can significantly improve
the performance of a disk-bound system, but
will result in wasted work if reference patterns
change so as to not match the layout of objects
on disk.

1.3 Write-Ahead Logging

Transactional systems can append all pending
modifications to a write-ahead log at transac-
tion commit. If the log is stored contiguously



on disk, all pending modifications can be com-
bined into one (or at most a few) disk write.
This technique reduces commit latency. How-
ever, since the updates in the write-ahead log
must be moved to their final location on disk
eventually, disk throughput can only be im-
proved in combination with other techniques.

1.4 Replication

In some systems [7] the write-ahead log is
replicated and stored in processor memories
instead of being stored on disk, and there-
fore commit latency is improved even further.
Again, replication only reduces commit laten-
cies. Other techniques are needed to improve
disk throughput.

1.5 Write Sorting

The disk scheduler can reorder writes to min-
imize rotational delays and disk arm move-
ments. The scheduler can also discard du-
plicate writes and combine smaller contiguous
writes into one large disk write and therefore
obtain a higher disk transfer rate. This tech-
nique works especially well with write-ahead
logging systems because in such systems trans-
actions are committed by making the write-
ahead log persistent. Therefore the write-
sorting step that moves data from the log to
the database proper can be delayed without in-
creasing transaction commit latency. (Write-
sorting becomes more effective as disk writes
are delayed for larger amounts of time because
at any given moment, more pending writes will
be available for sorting.)

1.6 Log-Structured Storage

Some file-systems carry the write-ahead log
scheme a step further [8, 9]. Persistent storage
for the entire database is arranged as a log.
At transaction commit, modified data is ap-
pended to the log. There is no copying of data
from the log to a separate organized structure
on disk. Data is reorganized only to create
empty space as the log grows to fill the disk.

2 Proposed Strategies

The proposed strategies achieve different
trade-offs between read and write perfor-
mance. All of these strategies are based on the
assumption that the set of persistent objects
is partitioned into disjoint segments. Another
assumption is that a partitioning process will
cluster related objects into the same segment.
(The details of the partitioning process are not
described here — it may be based on applica-
tion level hints, or the reference patterns seen
by the database.)

Each of the proposed strategies uses a
volatile cache to satisfy read requests quickly.
Transactions are committed by storing up-
dates into a replicated write-ahead log.

2.1 In-Place

The in-place strategy assigns a fixed disk lo-
cation to each segment. Entire segments are
read into the volatile cache at one shot under
the assumption that if one part of the segment
is being read, then other parts will be read
soon. This strategy is derived from the usual
read-optimized disk management strategies for
file-systems and traditional databases [9].

This strategy should provide good read per-
formance, and replication, write-ahead log-
ging, and write-sorting will be used to improve
the usually poor write performance of such a
read-optimized strategy. Some complications
may arise when segments change in size and
have to be moved around on disk, or when
access patterns change and objects have to be
re-partitioned into new segments to provide ef-
fective clustering.

2.2 Log-Structured

The log-structured strategy organizes all avail-
able disk space as a log. Conceptually, the
disk log is an extension of the replicated in-
memory write-ahead log. As the memory log
fills up, its contents are appended to the disk
log. This strategy is a simple adaptation of
the disk management strategy used in the log-
structured file system [9].

This strategy has the potential to perform
very well on writes because the contents of the
memory log can be moved to the disk log with



big sequential writes. The drawback of this
strategy is that the contents of a segment can
end up scattered over the disk and therefore
read performance may suffer. In addition, a
recent file-system study has shown that un-
der certain access patterns the overhead of re-
claiming disk space in such a strategy can be
high enough to completely negate any perfor-
mance benefits provided by a log-structured
disk organization [10]. It will be interesting to
see if similar results are obtained for the access
patterns seen by an object-oriented database.

2.3 Hybrid

The hybrid strategy is also influenced by work
on the log-structured file system and views
disk space as a log. However, the hybrid strat-
egy always appends whole segments at a time
to the disk log. Therefore the contents of a seg-
ment are always stored contiguously on disk.

The hybrid strategy will provide good read
performance like the in-place strategy. The
presence of large contiguous segments on disk
may also allow us to use a more efficient
space reclamation policy than the pure log-
structured strategy. However, write perfor-
mance will suffer compared to the pure log-
structured strategy because of extra data
movement required to keep segment contents
stored contiguously on disk. Write-sorting and
write-ahead logging may help alleviate this
problem.

3 Conclusions

The proposed strategies explore the trade-off
between the read and write performance of
an object-oriented database. My plan is to
implement the three strategies as part of the
Thor object-oriented database [6] and evalu-
ate their performance under the OO7 bench-
mark [2]. The traversals specified in the OO7
benchmark may not cover all access patterns
of interest and therefore I may also have to in-
vent some benchmarks of my own to evaluate
these strategies.

My expectation is that the the log-
structured strategy will not perform very well.
It has performed well in file-systems because
of the mostly sequential access patterns seen

in those systems. In the presence of less se-
quential access patterns, the overhead of space
reclamation and the poor clustering of related
objects on disk may very well outweigh the
good write performance provided by a log-
structured strategy. It is harder to choose
between the hybrid strategy and the in-place
strategy. The hybrid strategy may be able to
pick a better location for the segment it is writ-
ing out to disk. (Some of the techniques de-
scribed in [3, 4, 5] may be applicable.) How-
ever, the space reclamation costs for the hy-
brid strategy may tip the balance in favor of
the in-place strategy.

References

[1] Mary G. Baker, John H. Hartman,
Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a
distributed file system. In Proceedings of
18th ACM Symposium on Operating Sys-
tems Principles, pages 198-212. Associa-
tion for Computing Machinery SIGOPS,
October 1991.

[2] Michael J. Carey, David J. DeWitt, and
Jeffrey F. Naughton. The OO7 bench-
mark. In Proceedings of the 1993 ACM
SIGMOD International Conference on
Management of Data, pages 12-21, Wash-
ington, DC, May 1993.

[3] Chia Chao, Robert English, David Ja-
cobson, Alexander Stepanov, and John
Wilkes. Mime: A high performance stor-
age device with strong recovery guar-
antees. Technical Report HPL-92-44,
Hewlett Packard, Software and Systems
Laboratory, March 1992.

[4] Robert English and Alexander Stepanov.
Loge: A self-organizing storage device.
In Winter Usenix Technical Conference,
pages 237-251, San Francisco, January
1992. USENIX Association.

[6] Robert B. Hagmann. Low latency log-
ging. Technical Report CSL-91-1, Xerox
Palo Alto Research Center, 3333 Coyote
Hill Road, Palo Alto, CA 94304, February
1991.



[6]

[7]

(8]

[9]

[10]

Barbara Liskov, Mark Day, and Liuba
Shrira. Distributed object management
in Thor. In M. Tamer Ozsu, Umesh
Dayal, and Patrick Valduriez, editors,
Distributed Object Management. Morgan
Kaufmann, San Mateo, California, 1993.

Barbara Liskov, Sanjay Ghemawat, Rob-
ert Gruber, Paul Johnson, Liuba Shrira,
and Michael Williams. Replication in the
Harp file system. In Proceedings of 13th
ACM Symposium on Operating Systems
Principles, pages 226-38. Association for
Computing Machinery SIGOPS, October
1991.

John Ousterhout and Fred Douglis. Beat-
ing the I/O bottleneck: A case for log-
structured file systems. ACM Operat-
ing Systems Review, 23(1):11-28, Jan-
uary 1989. Also appears as University
of California, Berkeley, Technical Report
UCB/CSD 88/467.

Mendel Rosenblum and John K. Quster-
hout. The design and implementation of a
log-structured file system. In Proceedings
of 18th ACM Symposium on Operating
Systems Principles, pages 1-15. Associa-
tion for Computing Machinery SIGOPS,
October 1991.

Margo Seltzer, Keith Bostic, Marsh-
all Kirk McKusick, and Carl Staelin. An
implementation of a log-structured file
system for UNIX. In Winter Useniz
Technical Conference, pages 201-220, San
Diego, CA, January 1993. USENIX Asso-
ciation.



