
Collecting Cyclic Distributed Garbage

Umesh Maheshwari (umesh@lcs.mit.edu)

M.I.T. Laboratory for Computer Science
Cambridge, MA 02139

1 Introduction

Systems that store objects on networked computers (nodes)
reclaim unusable objects by either global marking [HK82]
or distributed reference counting [Bis77]. Global marking
requires the cooperation of all nodes before it can collect
any garbage. Distributed reference counting is preferred for
systems with large number of nodes because it is more fault-
tolerant and scalable. However, it cannot collect multi-node
cycles of garbage objects. In long-lived systems such as
persistent object stores, even small amounts of uncollected
garbage can cause significant storage loss over time.

The problem can be solved either by using a comple-
mentary marking scheme, or by migrating objects so that
cyclic garbage ends up in a single node and is collected by
the local collector [Bis77, SGP90, GF93]. Migration-based
schemes, like distributed reference counting, are decentral-
ized and fault-tolerant: The collection of a cycle requires the
cooperation of only those nodes that contain it, and progress
is made even if other nodes or other parts of the network fail.

Existing migration schemes have some practical prob-
lems. Most schemes migrate all locally unreachable ob-
jects, although they may be reachable from roots on other
nodes [Bis77, GF93]. Migration of live objects is undesirable
because it wastes processor and network bandwidth. Worse,
it interferes with object placement and load balancing.

This paper presents simple techniques to avoid unneces-
sary migration. We use a heuristic to detect objects that are
highly likely to be cyclic garbage and migrate only those. Fur-
ther, we avoid migrating objects multiple times by estimating
a destination node where a garbage cycle can converge.

2 The Environment

Our algorithm is designed for use in the Thor object database,
and it is applicable to other systems that store objects at
multiple nodes. Objects contain references to other objects,
which may be on other nodes. An object is reachable from
another if there is a path of references from the second to
the first. Liveness of objects is determined by reachability

This research was guided by Prof. Barbara Liskov. It was supported in part
by the Advanced Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract N00014-91-J-
4136.

from the persistent root objects. If two garbage objects on
different nodes are reachable from each other, they are said
to be on a multi-node garbage cycle.

In distributed reference counting schemes, each node does
an independent local collection based on tracing from a root
set that includes the local persistent root objects as well as
local objects that are referenced from other nodes. We use a
variant called reference listing [Bis77, ML94]. Here, a node

1 keeps, for every other node 2, an inlist of objects in
1 that 2 may hold references to. When a new internode

reference is created from node 2 to an object at node
1, 1 enters a reference to in its inlist for 2. The local

collector at 1 uses inlist entries as roots. As it traces, it
records all references to remote objects, say on 3, in an
outlist for 3. At the end of collection, 1 sends the outlist
to 3, which then uses the outlist to replace its inlist for 1.

3 Distance Heuristic

We detect cyclic garbage based on the distances of objects.
The distance of an object is the minimum number of internode
references in any path from a persistent root to that object.
The distance of an object unreachable from the persistent
roots is infinity. Figure 1 illustrates the notion of distance.
Object is a persistent root and therefore has zero distance.

Estimates of object distances are computed as follows. A
distance is associated with each reference in the root set: The
distance of a persistent root is implicitly zero, and each refer-
ence in an inlist has a distance field. When a new inlist entry
is created, its distance is simply set to one. The estimated
distance of an object is implicitly the minimum distance of
any reference in the root set it is reachable from.

The local collector propagates distances from roots to out-
lists, setting the distance of an outlist entry to one plus the
minimum distance of any root it is reachable from. The

r st

v u

z

xy

0
0

oo

1 1

2

node 1 node 2 node 3

3
oo w

2

Figure 1: Distances of objects.

1



collector accomplishes this by tracing from the roots in the
increasing order of their distances and tracing completely
from one root before going on to the next. (This is similar to
timestamp propagation in [Hug85].) As before, a node uses
an outlist received from another node to replace its inlist for
that node.

Propagation through local collections and outlist messages
causes the distances of cyclic garbage to increase without
bound. It can be shown that if the nodes containing a garbage
cycle do local collections and exchange outlists periodically,
the distance of the garbage objects will increase at the rate of
one per round of collection, on the average.

Since the distance estimates of live or non-cyclic garbage
objects do not increase indefinitely, it is possible to select
a threshold distance, , such that all objects with a greater
distance are highly likely to be cyclic garbage. Only these
objects are migrated.

The choice of the threshold depends on the expected dis-
tances of live objects. Since estimated distances of live ob-
jects may deviate temporarily from their actual distances,
the threshold should be chosen to be a small multiple of the
expected maximum distance. Fortunately, the penalty on
misjudging the threshold is not severe: If it is low, some live
objects may be migrated but safety is not compromised since
the objects would not be deleted. If the threshold is high, all
cyclic garbage will still be detected eventually.

Distance propagation needs the cooperation of only the
nodes that the garbage lies on. Specifically, if a node is
crashed, partitioned, or otherwise slow in doing local collec-
tion, the collection of only the garbage that is reachable from
its objects will suffer.

Further, the scheme has little overhead. Distance fields
are only associated with inlist and outlist entries, not with all
objects. No extra messages are required over those already
sent for collecting non-cyclic distributed garbage.

4 Migration

Consolidating a distributed cycle by migrating objects
presents some practical problems. First, migrating a remotely
referenced object that contains references to local objects is
likely to create more remotely referenced objects that may
have to be migrated later. Our scheme makes it simple to
batch objects: Once the distance of the root being traced is
above the threshold, all objects traced from the same root
reference are migrated together.

Second, most existing schemes migrate objects to nodes
that reference them. To ensure that all objects in a cycle
converge on the same node instead of following each other in
circles, nodes are totally ordered by ids and migration is al-
lowed only in, say, the increasing order of node ids [SGP90].
However, objects on a multi-node cycle may still require mul-
tiple migrations before converging on the maximum node the
cycle passes through.

To avoid multiple migrations, we propagate estimates of
the maximum node. Inlist and outlist entries with distances
greater than the threshold have an associated destination field.
When the collector creates such an outlist entry, the destina-
tion is set to the higher of the target node id, the local node
id, and the destination field (if any) of the inlist entry begin
traced. To propagate the maximum node id, all inlist en-
tries above the distance threshold are traced in the decreasing
order of their destination fields. Before migrating objects,
nodes wait until the destination information is likely to have
propagated around the cycle. Even if some objects are mi-
grated before all nodes agree on the destination node, a cycle
would still eventually converge on the same node.

Any migration-based scheme has some limitations. If
there are too many objects in a garbage cycle, there may be no
space for them in the destination node. Our scheme helps by
avoiding unnecessary migration, but further improvements
are desirable. For example, our scheme migrates objects
on garbage chains going out from garbage cycles, although
such chains could be better collected by distributed reference
counting after the garbage cycle is collected.

5 Conclusions

We have presented a simple and efficient way of using object
migration to collect cyclic distributed garbage. Our approach
is to limit migration to the bare minimum. We use the dis-
tance heuristic to avoid migrating objects that are not cyclic
garbage. Further, we migrate objects directly to the selected
destination node to avoid multiple migrations. Our scheme
is decentralized and adds little overhead to the system. More
about our scheme is found in [ML95].

References
[Bis77] P. B. Bishop. Computer Systems with a Very Large Address Space,

and Garbage Collection. Technical Report MIT/LCS/TR-178, MIT Lab
for Computer Science, Cambridge MA, May 1977.

[GF93] A. Gupta and W. K. Fuchs. Garbage Collection in a Distributed
Object-Oriented System. IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 2, April 1993.

[HK82] P. Hudak, and R. Keller. Garbage Collection and Task Deletion in
Distributed Applicative Processing Systems. ACM Symposium on Lisp
and Functional Programming, pages 168–178, August 1982.

[Hug85] J. Hughes. A Distributed Garbage Collection Algorithm. Func-
tional Programming and Computer Architecture (Lecture Notes in Com-
puter Science 201), pages 256–272, Springer-Verlag, September 1985.

[ML94] U. Maheshwari, and B. Liskov. Fault-Tolerant Distributed Garbage
Collection in a Client-Server Object-Oriented Database. Proceedings of
the Third International Conference on Parallel and Distributed Infor-
mation Systems, pages 239-248, September 1994.

[ML95] U. Maheshwari, and B. Liskov. Collecting Cyclic Distributed
Garbage By Controlled Migration. To appear in Proceedings of Prin-
ciples of Distributed Computing, August 1995.

[SGP90] M. Shapiro, O. Gruber, and D. Plainfosse. A Garbage Detection
Protocol for a Realistic Distributed Object-Support System. Research
Report 1320, INRIA–Rocquencourt, November 1990.

2


