
Collecting Cyclic Distributed Garbage
by Controlled Migration

Umesh Maheshwari Barbara Liskov

M.I.T. Laboratory for Computer Science
Cambridge, MA 02139

Abstract

Distributed reference counting provides timely and fault-
tolerant garbage collection in large distributed systems, but
it fails to collect cyclic garbage distributed across nodes. A
common proposal is to migrate all objects on a garbage cycle
to a single node, where they can be collected by the local
collector. However, existing schemes have practical prob-
lems due to unnecessary migration of objects. We present
solutions to these problems: our scheme avoids migration of
live objects, batches objects to avoid a cascade of migration
messages, and short-cuts the migration path to avoid multiple
migrations. We use simple estimates to detect objects that
are highly likely to be cyclic garbage and to select a node to
which such objects are migrated. The scheme has low over-
head, and it preserves the decentralized and fault-tolerant
nature of distributed reference counting and migration.

1 Introduction

Systems that store objects on multiple nodes need distributed
garbage collection to reclaim storage of inaccessible objects.
These systems can use either global marking [HK82] or
distributed reference counting [Bis77]. Global marking re-
quires the cooperation of all nodes before it can collect any
garbage. Distributed reference counting is preferred for sys-
tems with large numbers of nodes because it is more fault-
tolerant and scalable, and quicker at collecting distributed
garbage. Many variants of distributed reference count-
ing schemes have been proposed to enhance fault-tolerance
and reduce overheads [Ali84, Bev87, Ves87, Piq91, LL92,
SDP92, BENOW93, ML94].

Distributed reference counting algorithms cannot col-
lect multi-node cycles of garbage objects. This is par-
ticularly undesirable in long-lived systems such as persis-
tent object stores, where even small amounts of uncol-
lected garbage can accumulate over time to cause a signif-
icant storage loss. The problem can be solved either by

A version of this paper is in the proceedings of the Principles of Distributed
Computing, 1995. This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N00014-91-J-4136.

using a complementary marking scheme to collect cyclic
garbage [Ali84, JJ92, LQP92], or by migrating objects so
that cyclic garbage ends up in a single node and is collected
by the local collector [Bis77, SGP90, GF93]. The advantage
of migration is that, like distributed reference counting, it is
decentralized and fault-tolerant. The collection of a cycle re-
quires the cooperation of only those nodes that contain it, and
progress can be made even if other nodes or other parts of the
network fail. Therefore, migration is an attractive solution
in large-scale systems that allow objects to migrate between
nodes.

However, existing migration schemes have some practical
problems. First, they tend to migrate live objects along with
garbage. Most schemes migrate locally unreachable objects,
either immediately [Bis77, Bag91] or if the objects are not
used for some time period [GF93]. In a persistent store, how-
ever, live objects may not be accessed for long periods (say,
weeks or months), so even systems that wait will migrate
live objects. Migration of live objects is undesirable because
it wastes processor and network bandwidth. Also, it inter-
feres with load balancing. For example, a database might
be partitioned between two nodes to position objects close to
frequent users, yet it may have a single logical root, say, on
the first node. In that case, all objects on the second node
would be locally unreachable, but should not be moved. (Of
course, users could prevent this migration by explicitly root-
ing the second partition locally, but this leads to exactly what
garbage collection is supposed to replace: error-prone man-
ual memory management.) The problem with load-balancing
is exacerbated because migration must occur in one direction
to avoid thrashing, as explained in Section 4.2.

This paper presents a simple way to avoid unnecessary
migration. We estimate the length of the shortest path from
any root to each object. Estimates for cyclic distributed
garbage objects keep increasing without bound; those of other
objects do not. We migrate only objects with very large
estimates.

We also do the actual migration of objects efficiently. Con-
solidating a distributed garbage cycle may involve migrating
objects multiple times before they converge on the same node.
Some schemes avoid this problem by migrating objects to a
fixed dump node [GF93], but having a single dump node in
a large system can be a performance or fault-tolerance bot-
tleneck. We have a simple way of selecting one of the nodes

1



containing a garbage cycle as the destination, and we migrate
all objects on the cycle directly to that node. Further, mi-
grating an object often leaves behind objects that have to be
migrated later; our scheme determines all objects at a node
that should be moved together, and batches them in a single
message.

Our scheme is based on a fault-tolerant variant of refer-
ence counting described in Section 2, and adds very little
space and time overhead to the base scheme. Unlike some
other schemes [BE86, KA93], ours does not require the local
collector to trace the object graph multiple times. It also pre-
serves the naturally decentralized and fault-tolerant nature of
distributed reference counting and migration.

The scheme achieves its desirable performance proper-
ties by delaying the collection of cyclic garbage: it waits
to migrate objects until they have a large distance estimate,
and until the destination node has been selected, thus avoid-
ing the cost of unnecessary migrations that occur in other
schemes. We believe that slowness in collecting distributed
cyclic garbage is not a practical problem because we expect
cyclic garbage to be a small fraction of the total garbage.
Thus, our scheme makes an appropriate tradeoff: cyclic
garbage is always collected, but in a way that does not degrade
overall system performance.

The rest of the paper is organized as follows. Section 2
describes the environment in which our technique is to be
used and how reference counting works in that environment.
Section 3 describes the distance heuristic used to recognize
cyclic garbage. Section 4 discusses how we migrate objects
efficiently. Section 5 surveys related work in collection of
distributed cyclic garbage, and Section 6 contains our con-
clusions.

2 The Problem Context

Our algorithm is designed for use in the Thor object-oriented
database system [LDS92], although it is applicable to a wide
range of similar distributed systems. Thor stores persistent
objects at geographically distributed nodes. At any time, an
object resides at one node, although it can be migrated to
another node. Objects contain references to other objects,
which may reside at any node. For efficient access, a ref-
erence to an object contains the identity of the node where
the object resides [DLMM93]. Objects are clustered within
nodes so that internode (remote) object references are rarer
than intra-node (local) references.

Persistence of objects is determined by reachability from
the persistent root objects, which may be on any node. An
object is reachable from if is or if contains a
reference to and is reachable from . We also say that an
object is locally reachable from if and are on the same
node and is reachable from through only local references.

An object that is not reachable from any persistent root
is garbage. (In this paper, we ignore transient roots such as
stack variables.) If two garbage objects on different nodes are

reachable from each other, they are on a multi-node garbage
cycle and are said to be cyclic distributed garbage. In general,
a number of garbage cycles may be reachable from each other,
thus forming a compound cycle, and further, there may be
non-cyclic chains of references incident on or outgoing from
a cycle. In our scheme, garbage objects on chains outgoing
from a garbage cycle are treated like objects on garbage
cycles. Therefore, we shall often not distinguish between the
two.

In distributed reference counting schemes, each node does
a local collection independent of other nodes. The local
collection is based on tracing from a root set that includes
the local persistent root objects as well as local objects that
are referenced from other nodes, called the secondary roots.
Different variants of distributed reference counting employ
different methods and information to track the secondary
roots, ranging from one-bit counts [Ali84, JJ92] to weighted
reference counts [Bev87] to reference lists, in which each
node tracks the identities of the nodes that refer to its ob-
jects [Bis77, SDP92, BENOW93].

We use reference listing because it handles catastrophic
node failures and provides better fault-tolerance for mes-
sages. (For a full description see [ML94].) Our scheme
works as follows:

1. A node 1 keeps, for every other node 2, a list of objects
in 1 that 2 may hold references to. We call the list the
inlist for 2 at 1.

2. When a new internode reference is created from node 2

to an object at node 1, 1 is told to enter a reference
to in its inlist for 2.

3. The local collector uses inlist entries as secondary roots.
As it traces, it records all references to remote objects that
it encounters. At the end of collection at node 2, the list
of reachable references to objects in another node 1 is
sent to 1. We call this the outlist for 1 at 2.

4. When 1 receives an outlist from 2, it uses it to replace
its inlist for 2. This serves to remove unnecessary entries
from the inlists.

3 Distance Heuristic

This section describes how we recognize distributed cyclic
garbage. Our approach is based on estimating the “distances”
of objects:

The distance of an object is the minimum number of
internode references in any path from a persistent root
to that object. The distance of an object unreachable
from the persistent roots is infinity.

Figure 1 illustrates the notion of distance. Object is a
persistent root and therefore has zero distance; so does
since it is locally reachable from a persistent root. Object is

2



reachable from through two paths: one with two internode
references and another with one; its distance is therefore
one. Objects and are garbage and have infinite distance.
Note that even the distance of a live object is theoretically
unbounded: it can be more than the number of nodes in
the system, since references can go back and forth between
nodes.

r st

v u

z

xy

0
0

oo

1 1

2

node N1 node N2 node N3

3
oo w

2

Figure 1: Actual distances of objects.

3.1 Estimating Distances

We maintain estimates of object distances as follows. A
distance is associated with each reference in the root set.
There may be multiple references in the root set to the same
object, each with a different distance. The estimated distance
of an object is the minimum distance of any reference in the
root set it is reachable from.

The distance of a persistent root is implicitly zero, and
each reference in an inlist has an associated distance field.
When an inlist entry is created because of a new internode
reference, its distance is initialized to one for want of better
information.

The local collector propagates distances from roots to out-
lists, setting the distance of an outlist entry to one plus the
minimum distance of any root it is reachable from. It accom-
plishes this by tracing from the roots in the increasing order of
their distances and tracing completely from one root before
going on to the next. This does not necessitate depth-first
traversal; a copying collector can be used as long as one root
is traced completely before the next untraced root is copied.
As with other practical schemes, once an object has been
traced, it is not traced again. When an outlist entry is created,
its distance is set to one plus the distance of the root being
traced. This technique is similar to timestamp propagation
in [Hug85], which is described in Section 5.

As before, outlists are sent to other nodes after a collection.
When a node receives an outlist, it uses it to replace its inlist
for the sender, including the associated distance fields.

This scheme has little space and time overhead. Distance
fields are only associated with inlist and outlist entries, not
with all objects, and require only a few bits (a one-byte
field can account for chains with 255 internode references).
No extra messages are required over those already sent for
collecting non-cyclic distributed garbage, although the outlist
messages are a little larger. The inlists can be traced in

distance order efficiently as follows. Each inlist is kept sorted
by distance and the local collector simply merges them on
the fly. Note that the outlists are generated in distance order
as well. Since inlists are updated using outlists, the inlists
don’t need to be sorted explicitly.

The scheme does depend on the use of inlists rather than
reference counts. Inlists allow us to maintain different dis-
tances for the same object — one for each node that refer-
ences it. If the minimum-distance entry is removed, the next
smallest becomes effective automatically. For instance, in
Figure 1, 3 contains two inlist entries for : in the inlist for

1 with distance one and in the inlist for 2 with distance
two. If the reference from to is deleted, 3 will eventually
receive an updated outlist from 1, remove the correspond-
ing inlist entry, with the result that the estimated distance of

will change to two. With reference counts, it would not be
possible for 3 to update the distance without querying other
nodes.

3.2 Distance of Cyclic Garbage

Propagation through local collections and outlist messages
causes the distances of cyclic garbage to increase without
bound. Intuitively, this happens because each local collec-
tion increments the estimates as it propagates them from
inlists to outlists, and there is no persistent root to hold down
this increase. This section quantifies the rate of increase of
distance estimates for cyclic garbage.

Nodes do local collections at different times and different
rates. For simplicity of analysis, assume that nodes do at
least one local collection in a certain period of time, called a
round. In each round, nodes update inlists using the outlists
received in the previous round, do a local collection, and
send new outlists to other nodes. (Section 3.4 discusses the
implications of slow nodes.)

First consider a simple example. Figure 2 shows a cycle
of internode references that is “rooted” at some object ,
which is reachable from a persistent root through a chain
of internode references. Thus, the distance of is and
that of each successive object in the cycle is one higher, such
that the distance of the last object in the cycle is 1.

r s

t

0
D

D+C-1

Figure 2: Distances in a cycle of references.

The cycle turns into garbage when a reference in the chain

3



from to is deleted. Then, the chain of references leading
to will be removed in at most rounds through regular
distributed collection. When this happens, the estimated
distance of jumps from to the next best alternative, ,
due to the reference from . The increase in the distance of

starts a wave of increased distances down the cycle and,
rounds later, the wave reaches again, increasing its distance
to 2 . Similarly, after every rounds, the distances of
objects on the cycle increase by . Thus, the distances of all
objects on the cycle will cross any given value, , in about

rounds.
In fact, the following theorem holds for arbitrary graphs

of garbage objects, including compound cycles with incident
and outgoing chains.

Theorem 1
rounds after an object became garbage, the estimated

distance of the object will be at least if the object is not
collected by then.

Proof (by induction)
Consider an object that became garbage at some point.

At that time, the set of all objects that is still reachable
from must be garbage as well. Further, since the mutator
does not create new references to garbage objects, this set
cannot grow.

The theorem holds trivially when is zero.
Suppose the theorem holds when is . Then, after
rounds, the distance estimates for and all objects it is

reachable from must be at least . Thus, all outlist entries
generated by tracing through any of these objects must have
a distance of at least 1.

In round 1, the outlists from round are used to
update the corresponding inlists. If is not reachable from
a local inlist entry, it will be collected by the local collec-
tor, since is also not reachable from any persistent root.
Otherwise, the estimated distance of will be the minimum
distance of any inlist entry it is reachable from. But the dis-
tances of all such entries must be at least 1. Thus the
theorem holds when is 1.

3.3 The Threshold

While Theorem 1 holds for all garbage objects, any non-
cyclic garbage is duly collected by distributed reference
counting. Thus, the distance estimates for cyclic garbage
objects increase indefinitely, while those of other objects do
not. Therefore it is possible to select a threshold distance, ,
such that all objects with a greater distance are highly likely
to be cyclic garbage. Only those objects are migrated.

The choice of the threshold depends on the expected dis-
tances of live objects. However, estimated distances of live
objects may deviate temporarily from their actual distances.
Figure 3 shows a somewhat contrived scenario where the de-
viation may be significant. Object is a persistent root; is
reachable from via 10 internode references; is reachable

from along two paths: one with one internode reference,
and another with 10 internode references. The distance of

is thus 11. Now suppose the mutator creates a reference
from to and then removes the direct reference from to ,
so that the actual distance of remains 11. When 3 learns
that the reference from to has been deleted, the estimated
distance to jumps up to 20, which would have been the old
distance of if the reference from to were absent. Only
after the information propagates on the path from to , is
the estimated distance of reduced to 11.

r s t
0

node N1 node N2 node N3

10
10

10 11

r s t
0

10
10

1 11

(i)

(ii)
(estimate=20)

Figure 3: Deviation in the estimates.

Although the deviation of estimates from actual distances
cannot be bounded, it is reasonable to expect that a single
chain is unlikely to have many changes of the sort illustrated
in Figure 3 occurring at the same time. Thus the threshold
can be chosen to be only a small multiple of the expected
maximum distance. For example, if the expected maximum
distance is 10, it is reasonable to set the threshold to 30.

Setting the threshold involves a tradeoff: The threshold
should be high enough that non-cyclic garbage is unlikely to
be migrated, but a low threshold will collect cyclic garbage
faster. Fortunately, the penalty on misjudging the threshold
is not severe. If the threshold is too low and live objects
with larger distances are migrated, safety is not compromised
since the objects will be deleted only if they are actually
unreachable from the roots. If the threshold is too high,
Theorem 1 still guarantees that all cyclic garbage will be
detected eventually.

3.4 Fault Tolerance

Distance propagation has the locality and fault-tolerance of
distributed reference counting: the detection of distributed
garbage needs the cooperation of only the nodes that the

4



garbage is reachable from. Stated differently, if a node is
crashed, partitioned from others, or otherwise slow in do-
ing local collection, it will hinder the collection of only the
garbage that is reachable from its objects. The scheme does
not require any global mechanism: it makes progress through
decentralized, pair-wise communication between nodes.

When a node 1 is uncooperative, the inlists for 1 at
other nodes are not updated. This is safe because the esti-
mated distances of the objects reachable from such an inlist
entry will not increase above the distance of that entry. An
uncooperative node might delay the recognition of garbage,
but that appears to be unavoidable: if some garbage is reach-
able from 1, then 1 must play its role in the detection of
that garbage.

4 Migration

This section discusses practical issues that arise in con-
solidating a garbage cycle on a single node. We assume
the system already possesses a mechanism for migrating
objects and updating the references to them in other ob-
jects [SGP90, DLMM93]. We discuss how to batch objects
for migration, and how to determine where to send the mi-
grating objects. The emphasis is on reducing the number of
object migrations because of their processing cost: sending
messages and updating references.

4.1 Batching Objects

Migrating a remotely referenced object that contains refer-
ences to local objects is likely to create more remotely refer-
enced objects that may have to be migrated later. However,
not all objects reachable from the migrating object should be
migrated with it. For example, when object in Figure 4 is
migrated, we ought to also migrate but not .

r

u
v

z

xy

node N1 node N2 node N3

Figure 4: Batching objects to be migrated.

Tracing inlist entries in the increasing order of distances
makes it simple to select objects that should be migrated
together. Once the distance of the root being traced is above
the threshold, any object traced thereafter is likely to be
garbage. Then, all objects traced from the same root reference
are migrated together. In Figure 4, will be traced from the
root , and and will be batched together.

4.2 Where to Migrate

The goal is to migrate all objects on a garbage cycle to a
single node. Some schemes migrate objects to a fixed dump
node [GF93], but this can be a performance or fault-tolerance
bottleneck in a large system. The dump node might be far
away from the nodes containing the garbage cycle, or it might
be unavailable when it is time to migrate the cycle.

Other schemes migrate objects to nodes that refer to them.
To ensure that all objects in a cycle converge on the same
node instead of following each other in circles, nodes are
totally ordered and migration is allowed only in one direc-
tion [SGP90]. However, objects on a multi-node cycle may
require multiple migrations before converging on the same
destination node. For a simple cycle that spans nodes,

2 object migrations may be performed: the object clos-
est to the final destination node is migrated once, while the
object farthest from it may be migrated up to 1 times.
For example, in Figure 4, assuming that migration is allowed
in the direction from 1 to 2 to 3, and are migrated
just once, but may be migrated twice (unless is migrated
after and have been migrated).

We too use an ordering on the nodes: migration is only
allowed in the direction of increasing node ids. However,
we estimate the destination node (the node with the maxi-
mum id) and migrate all objects on the cycle directly to it.
To this end, we propagate estimates of the destination node
along with distances that are above the threshold, and wait
before migrating objects until this information is likely to
have propagated around the cycle.

Inlist and outlist entries with distances greater than the
threshold have an associated destination field. When the
collector creates such an outlist entry, the destination is set to
the higher of the following:

1. The id of the node the outlist is for.

2. The destination of the inlist entry it is traced from, or, if
the inlist entry does not have a destination field, the local
node id.

As before, the outlists received from other nodes are used to
update inlists.

To propagate the maximum node id, all inlist entries above
the distance threshold are traced in decreasing order of their
destination fields. (It is acceptable to not trace them in
distance order because they are already likely to be cyclic
garbage.) If such entries were traced in distance order, the
maximum node id might not propagate around the cycle. For
instance, if there are multiple inlist entries to an object, the
one with the largest destination may be blocked by another
with a lower distance. This situation is illustrated in Fig-
ure 5, which shows a compound garbage cycle; all objects
in the figure are on different nodes. Here, has two inlist
entries: from 1 with distance 1 1 and from 2 with
distance 2 1. If 1 2 and 1 2, 2 would not
propagate beyond if we propagate in distance order. This

5



would result in multiple migrations: initially, some objects
would migrate to 1 and others to 2, and then the objects
migrated to 1 would migrate to 2. Tracing in destination
order ensures that the maximum id will eventually propagate
to other nodes, even in compound cycles, so that objects do
not have to be migrated multiple times.

s

t

N2, D2

r

N1, D1

u v

N3

w

Figure 5: Destination propagation in a compound cycle.

Migration is not necessary for objects that are reachable
from a distributed garbage cycle but are not part of the cycle:
if these objects did not migrate, they could still be collected
through non-cyclic collection after the cycle has been col-
lected. Our scheme does not prevent the migration of such
objects, but it does avoid migrating them multiple times. It
may migrate them to different nodes, however. For instance,
consider Figure 5, where a garbage chain passes through a
node 3 that is higher than the highest node 2 on the cycle
proper. The cycle and the front of the chain (object ) will
migrate to 2, while the trailing part of the chain (object )
would migrate to 3. The objects will not migrate further,
however, so multiple migrations are still avoided.

Unlike some leader election algorithms [LeL77], ours
does not incorporate termination detection, so nodes must
guess when destination propagation has completed; we dis-
cuss how to make this guess in the next section. The advan-
tage of our scheme is that it is simple and effective even in
compound cycles.

4.3 When to Migrate: the Second Threshold

To avoid migrating objects before receiving the final desti-
nation information, nodes wait until the distances of inlist
entries are above a second threshold, 2, which is higher than
the threshold used to detect cyclic garbage. Setting the
second threshold, 2, involves a tradeoff similar to that for
setting . It should be high enough that by the time the dis-
tance of an entry increases to 2, its destination field is likely
to be set to the highest node in the cycle. But it should be low
so that cyclic garbage is migrated quickly. In this section we
provide an estimate for how high 2 should be.

First, we quantify the number of rounds destination prop-
agation takes to complete. From Theorem 1, rounds after
a cycle became garbage, the distances of all objects on the
cycle will be at least . Thereafter, all associated inlist en-
tries will be traced in destination order. In more rounds,
the maximum node id on the cycle will propagate to the inlist
entries on other nodes, where is the the maximum length

of the shortest path between any two objects — counted in in-
ternode references. Thus, destination propagation in a cycle
completes in rounds after it became garbage.

However, nodes do not have any knowledge of the number
of rounds that have passed; they can only guess it from the
distances of inlist entries. The distances of the various en-
tries on the cycle may cross the threshold at different times.
As in the example illustrated in Figure 2, the distances may
actually increase in jumps of , the size of the cycle. Thus,
when the entry on the highest node crosses the threshold ,
its distance might actually be as high as 1. After
that, in the rounds it takes for its id to reach another node,
the distances might increase up to . Thus, an
appropriate setting for 2 is , where is the
expected maximum cycle size, and is the expected max-
imum internode distance between two objects as discussed
above.

Using a threshold to guess termination is only a heuristic.
If the threshold is reached before destination propagation
is complete, objects on a cycle may initially be migrated
to different nodes, resulting in multiple migrations. This
can happen even when the chosen values of , and
are conservative. The following contrived example shows
that no fixed setting for threshold 2 can prevent multiple
migrations. Figure 6 shows two cycles, where the right cycle
is reachable from the left cycle. Suppose that the left cycle
becomes garbage before the right cycle. Further, when the
distances of objects on the left cycle are near the second
threshold 2, those on the right cycle have just crossed .
Since the right cycle is now traced in destination order, the
maximum node on the left cycle, 1, may propagate to some
objects on the right cycle. Moreover, the distances of these
objects will jump above 2, causing them to migrate to 1.
If the maximum node on the right cycle, 2, is higher than

1, the remaining objects on the right cycle will migrate to
2. Those that were migrated to 1 will later be migrated to
2. If the nodes on the right cycle that migrated objects to
1 had waited longer, 2 would have propagated around the

cycle, so that all objects would have migrated to 2 directly.

N1, D=T2- N2, D=T

Figure 6: Destination propagation in connected cycles.

Fortunately, using a fixed threshold to guess termination
does not compromise correctness or liveness. Destination
propagation is used only as an optimization to reduce the
number of migrations before the objects converge.

6



5 Related Work

Distributed reference counting can be augmented in vari-
ous ways to collect cyclic distributed garbage. Some sys-
tems periodically invoke global marking to collect cyclic
garbage [Ali84, JJ92]. Lang et al. proposed marking within
groups of nodes such that each round can tolerate failures
of nodes outside the group [LQP92]. However, the for-
mation, management, and reconfiguration of groups is still
complex and speculative. Ferreira et al. group partitions
that are cached in memory on the same node, and thus col-
lect any inter-partition cyclic garbage that lies within the
group [FS94].

Hughes’s algorithm propagates timestamps from the roots
to the outlists [Hug85]. The timestamps of the persistent
roots are advanced to the current clock time before each local
collection. The persistent and the secondary roots are then
traced in the order of decreasing timestamps. As outlists are
exchanged, each node records the minimum timestamp that
it has yet to propagate. A global algorithm is used to detect
the minimum such timestamp recorded by any node, which
is used as a global threshold. Any object whose timestamp is
below this threshold is garbage. The timestamping algorithm
is the dual of distance propagation: it continually increases
the timestamps of live objects while the timestamps of the
garbage objects stagnate. If timestamps are not updated,
live objects may have old timestamps, but the low thresh-
old guards against their collection. The main weakness of
timestamp propagation is that if any node is uncooperative,
the global threshold will stop advancing, which will stop
garbage collection in the entire system.

Ladin et al. proposed the use of a logically centralized
service that tracks all inter-node references and uses Hughes’s
algorithm to collect cyclic garbage [LL92]. The centralized
service avoids the need for a distributed algorithm to compute
the global threshold. However, collection of cyclic garbage
still depends on timely correspondence between the service
and all nodes in the system. Further, the centralized service,
albeit replicated, can become a bottleneck in a large system.

Beckerle et al. proposed that each node send information
regarding which outlist entries are reachable from each sec-
ondary root to a fixed node in the system [BE86]. The fixed
node uses the information to detect unreachable cycles be-
tween nodes. This scheme has two problems. First, the fixed
node is a bottleneck. Second, to obtain the full set of outlist
entries reachable from any secondary root, the local collector
must trace from each secondary root independently. Thus, if
an object is reachable from multiple secondary roots, it will
have to be traced multiple times. If there are secondary
roots, objects, and references contained in them, then the
performance of local collection with multiple tracing would
be instead of the usual . Note that
both distance and timestamp propagation exploit an ordering
on the root set to avoid multiple tracings.

Vestal proposed trial deletion of objects suspected to be
garbage [Ves87]. A separate set of reference counts is used

to propagate the effect of trial deletions. If the trial count of
a trial-deleted object drops to zero, it confirms that the object
was cyclic garbage. The scheme is designed for systems
where local collections are based on reference counting and
does not extend well to tracing. In particular, it does not
work well if different nodes trial-delete objects on the same
chain. Even if separate sets of trial counts are maintained for
trial deletions started by different nodes, multiple tracings of
the object graph from different roots would be required to
propagate the information. The scheme suggested in [KA93]
uses probes to confirm the liveness of suspected objects. It,
too, requires multiple tracing.

Bishop first proposed migration of objects to collect cycles
between separately traced partitions [Bis77]. In his scheme,
locally unreachable objects are migrated immediately to the
partition they are referenced from. Shapiro et al. proposed
restricting the direction of migration according to a total order
among nodes to ensure that all objects on a cycle converge on
the same node [SGP90]. Shapiro also considered virtual mi-
gration to collect cyclic garbage. Here, a locally unreachable
object is not physically moved between nodes; instead, the
object merely changes the logical space it belongs to. Thus,
a logical space may span a number of nodes. Each logical
space is collected by marking, so that a local collection may
require internode marking messages.

Gupta et al. proposed migrating objects to a fixed dump
node in the system [GF93]. This scheme works with refer-
ence counts because it does not require the knowledge of the
referencing node. Also, it does not suffer from the problem
of multiple migrations. However, moving objects to a fixed
node is not scalable or fault-tolerant. To avoid migrating live
objects, the scheme ages the locally unreachable objects for
a certain number of local collections before migrating them.
If such an object is accessed (by the mutator) from another
node while it is aging, the mutator is expected to migrate it
to another node. Such a scheme does not prevent live objects
from migrating to the dump node if they are not accessed
during the aging period.

6 Conclusions

This paper has presented a simple and efficient way of us-
ing object migration to allow collection of distributed cyclic
garbage. Our approach is to limit migration to the bare mini-
mum. With high probability, we migrate only cyclic garbage
objects since these are usually the ones with distances over
the threshold. In addition, we migrate objects directly to a
selected destination node to avoid multiple migrations.

Our scheme would add little overhead to distributed ref-
erence listing for collecting non-cyclic garbage. The tech-
niques for estimating distances and destination nodes are low
cost and do not require extra messages over what must be
sent anyway for distributed garbage collection. Further the
scheme retains the fault-tolerance properties of distributed
reference counting: as long as the nodes containing the

7



garbage cycle cooperate, progress can be made in collect-
ing the garbage.

The price we pay to achieve these benefits is delay in
collecting cyclic garbage. We wait for estimated distances
to rise above the distance threshold, and then again for the
destination node to be known. We believe that slowness in
collecting distributed cyclic garbage is not a serious practical
problem because cyclic garbage is only a small fraction of
the total garbage. Therefore, our scheme makes the appropri-
ate tradeoff: cyclic garbage is collected eventually, without
degrading overall system performance and fault tolerance.

Acknowledgments

The authors are grateful to Miguel Castro, Raymie Stata,
James O’Toole, and the referees for their comments.

References
[Ali84] K. A. M. Ali. Garbage Collection Schemes for Distributed

Storage Systems. Proceedings of Workshop on Implementation
of Functional Languages, pages 422–428, Aspenas, Sweden,
February 1985.

[Bag91] N. Bagherzadeh. A Parallel Asynchronous Garbage Col-
lection Algorithm for Distributed Systems. IEEE Transactions
on Knowledge and Data Engineering, Vol. 3, No. 1, March
1991.

[BE86] M. J. Beckerle and K. Eknadham. Distributed Garbage
Collection With No Global Synchronization, Research Report
RC 11667, IBM T. J. Watson Research Center, Yorktown
Heights, New York.

[BENOW93] A. Birrell, D. Evers, G. Nelson, S. Owicki, and E.
Wobber. Distributed Garbage Collection for Network Objects.
Systems Research Center Technical Report 116, Digital, De-
cember 1993.

[Bev87] D. I. Bevan. Distributed Garbage Collection Using Refer-
ence Counting. Lecture Notes in Computer Science 259, pages
176–187, Springer-Verlag, June 1987.

[Bis77] P. B. Bishop. Computer Systems with a Very Large Address
Space, and Garbage Collection. Technical Report MIT/LCS/TR-
178, MIT Laboratory for Computer Science, Cambridge MA,
May 1977.

[DLMM93] M. Day, B. Liskov, U. Maheshwari, and A. Myers.
References to Remote Mobile Objects in Thor. ACM Letters on
Programming Languages and Systems, 1994.

[GF93] A. Gupta and W. K. Fuchs. Garbage Collection in a Dis-
tributed Object-Oriented System. IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 5, No. 2, April 1993.

[FS94] P. Ferreira and M. Shapiro. Garbage Collection and DSM
Consistency. Proceedings of the Third International Conference
on Parallel and Distributed Information Systems, pages 229-
241, September 1994.

[HK82] P. Hudak, and R. Keller. Garbage Collection and Task
Deletion in Distributed Applicative Processing Systems. ACM
Symposium on Lisp and Functional Programming, pages 168–
178, August 1982.

[Hug85] J. Hughes. A Distributed Garbage Collection Algorithm.
Functional Programming and Computer Architecture (Lecture
Notes in Computer Science 201), pages 256–272, Springer-
Verlag, September 1985.

[JJ92] N. C. Juul, E. Jul. Comprehensive and Robust Garbage Col-
lection in a Distributed System. 1992 International Workshop
on Memory Management, (Lecture Notes in Computer Science
637), Springer-Verlag, 1992.

[KA93] R. Kordale and M. Ahamad. A Scalable Cyclic Garbage
Detection Algorithm for Distributed Systems. OOPSLA’93
Workshop on Memory Management and Garbage Collection,
September 1993. Contact: kram@cc.gatech.edu.

[LDS92] B. Liskov, M. Day, and L. Shrira. Distributed Object
Management in Thor. Distributed Object Management, ed. M.
T. Ozsu, U. Dayal, and P. Valduriez, Morgan Kaufmann, 1992.

[LeL77] G. LeLann. Distributed Systems, towards a formal ap-
proach. IFIP Congress, pages 155–160, Torornto, 1977.

[LL92] R. Ladin, and B. Liskov. Garbage Collection of a Dis-
tributed Heap. Int. Conference on Distributed Computing Sys-
tems, pages 708–715, Yokohoma, Japan, June 1992.

[LQP92] B. Lang, C. Queinnec, and J. Piquer. Garbage Collecting
the World. Proceedings of the 19th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages
39–50, Albuquerque, Jan 1992.

[ML94] U. Maheshwari, and B. Liskov. Fault-Tolerant Dis-
tributed Garbage Collection in a Client-Server Object-Oriented
Database. Proceedings of the third Internation Conference on
Parallel and Distributed Information Systems, pages 239-248,
September 1994.

[Piq91] J. M. Piquer. Indirect Reference Counting: A Distributed
Garbage Collection Algorithm. PARLE ’91 — Parallel Architec-
ture and Languages (Lecture Notes in Computer Science 505),
pages 150–165, Springer-Verlag, June 1991.

[SDP92] M. Shapiro, P. Dickman, and D. Plainfosse. Robust, Dis-
tributed References and Acyclic garbage Collection. Symposium
on Principles of Distributed Computing, Vancouver, Canada,
August 1992.

[SGP90] M. Shapiro, O. Gruber, and D. Plainfosse. A Garbage
Detection Protocol for a Realistic Distributed Object-Support
System. Research Report 1320, INRIA–Rocquencourt, Novem-
ber 1990.

[Ves87] S. C. Vestal. Garbage Collection: An Exercise in Dis-
tributed, Fault-Tolerant Programming. PhD thesis, University
of Washington, January 1987.

8


