
Providing Persistent Objects in Distributed Systems

Barbara Liskov, Miguel Castro, Liuba Shrira , Atul Adya

Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139
liskov,castro,liuba,adya @lcs.mit.edu

Abstract. THOR is a persistent object store that provides a powerful programming
model. THOR ensures that persistent objects are accessed only by calling their
methods and it supports atomic transactions. The result is a system that allows
applications to share objects safely across both space and time.
The paper describes how the THOR implementation is able to support this pow-
erful model and yet achieve good performance, even in a wide-area, large-scale
distributed environment. It describes the techniques used in THOR to meet the
challenge of providing good performance in spite of the need to manage very
large numbers of very small objects. In addition, the paper puts the performance
of THOR in perspective by showing that it substantially outperforms a system
based on memory mapped files, even though that system provides much less
functionality than THOR.

1 Introduction

Persistent object stores provide a powerful programming model for modern applications.
Objects provide a simple and natural way to model complex data; they are the preferred
approach to implementing systems today. A persistent object store decouples the object
model from individual programs, effectively providing a persistent heap that can be
shared by many different programs: objects in the heap survive and can be used by
applications so long as they can be referenced. Such a system can guarantee safe sharing,
ensuring that all programs that use a shared object use it in accordance with its type (by
calling its methods). If in addition the system provides support for atomic transactions,
it can guarantee that concurrency and failures are handled properly. Such a platform
allows sharing of objects across both space and time: Objects can be shared between
applications running now and in the future. Also, objects can be used concurrently by
applications running at the same time but at different locations: different processors
within a multiprocessor; or different processors within a distributed environment.

A long-standing challenge is how to implement this programming model so as to
provide good performance. A major impediment to good performance in persistent
object stores is the need to cope with large numbers of very small objects. Small objects

This research was supported in part by DARPA contract DABT63-95-C-005, monitored by Army
Fort Huachuca, and in part by DARPA contract N00014-91-J-4136, monitored by the Office of
Naval Research. M. Castro is supported by a PRAXIS XXI fellowship. This paper appears in the
prooceedings of ECOOP’99.

Current address: Department of Computer Science, Brandeis University, Waltham, MA 02254.

can lead to overhead at multiple levels in the system and affect the cost of main memory
access, cache management, concurrency control and recovery, and disk access.

This paper describes how this challenge is met in the THOR system. THOR provides
a persistent object store with type-safe sharing and transactions. Its implementation
contains a number of novel techniques that together allow it to perform well even in
the most difficult environment: a very large scale, wide-area distributed system. This
paper pulls together the entire THOR implementation, explaining how the whole system
works.

THOR is implemented as a client/server system in which servers provide persistent
storage for objects and applications run at client machines on cached copies of persistent
objects. The paper describes the key implementation techniques invented for THOR: the
CLOCC concurrency control scheme, which provides object-level concurrency control
while minimizing communication between clients and servers; the MOB disk manage-
ment architecture at servers, which uses the disk efficiently in the presence of very small
writes (to individual objects); and the HAC client caching scheme, which provides the
high hit rates of an object caching scheme with the low overheads of a page caching
scheme. In effect, the THOR implementation takes advantage of small objects to achieve
good performance, thus turning a liability into a benefit.

The paper also presents the results of experiments that compare the performance
of THOR to that of C++/OS. C++/OS represents a well-known alternative approach to
persistence; it uses memory mapped files to provide persistent storage for objects, and
a 64-bit architecture to allow addressing of very large address spaces. This system does
not, however, provide the functionality of THOR, since it supports neither safe sharing
nor atomic transactions. The performance comparison between THOR and C++/OS is
interesting because the latter approach is believed to deliver very high performance.
However, our results show that THOR substantially outperforms C++/OS in the common
cases: when there are misses in the client cache, or when objects are modified.

The rest of this paper is organized as follows. We describe the THOR model in Sec-
tion 2. Section 3 presents an overview of our implementation architecture. Sections 4, 5,
and 6 describe the major components of the implementation. Our performance experi-
ments are described in Section 7, and conclusions are presented in Section 8.

2 Thor

THOR provides a universe of persistent objects. Each object in the universe has a unique
identity, a state, and a set of methods; it also has a type that determines its methods and
their signatures. The universe is similar to the heap of a strongly-typed language, except
that the existence of its objects is not linked to the running of particular programs. The
universe has a persistent root object. All objects reachable from the root are persistent;
objects that are no longer accessible from the root are garbage collected.

Applications use THOR objects by starting a THOR session. Within a session, an
application performs a sequence of transactions; a new transaction is started each time
the previous one completes. A transaction consists of one or more calls to methods
of THOR objects. The application code ends a transaction by requesting a commit or
abort. A commit request may fail (causing an abort); if it succeeds, THOR guarantees

that the transaction is serialized with respect to all other transactions and that all its
modifications to the persistent universe are recorded reliably. If the transaction aborts,
it is guaranteed to have no effect and all its modifications are discarded.

THOR objects are implemented using a type-safe language called Theta [LCD 94,
DGLM95]. A different type-safe language could have been used, and we have subse-
quently provided a version of THOR in which objects are implemented using a subset
of Java. A number of issues arise when switching to Java, e.g., what to do if an object
that cannot be made persistent, such as a thread in the current application, becomes
reachable from the persistent root. These issues are discussed in [Boy98].

Applications that use THOR need not be written in the database language, and in
fact can be written in many different languages, including unsafe ones like C and C++.
THOR supports such heterogeneous sharing by providing a small layer of code called a
veneer. A veneer consists of a few procedures that the application can call to interact
with THOR (e.g., to start up a session or commit a transaction), together with a stub
for each persistent type; to call a method on a THOR object, the application calls the
associated method on a stub object. More information about veneers can be found
in [LAC 96, BL94].

handle 1

handle 2

root

volatile

get_root, invoke
commit/abort

values, handles

Application Thor

V
en

ee
r

Fig. 1. The THOR Interface

Figure 1 illustrates the THOR interface. Note that THOR objects remain inside
THOR; this is an important way in which THOR differs from other object-oriented
databases [LLOW91, C]. Furthermore, the distinction is critical to safe sharing be-
cause this way we can ensure that objects are accessed properly, even though the
language used in the application may not be type safe.

Theta is a strongly-typed language and therefore once a method call starts running
within THOR, any calls it makes will be type safe. However, no similar guarantee exists
for calls coming into THOR from the application. Therefore all calls into THOR are
type-checked, which is relatively expensive. To reduce the impact of this overhead,
each call to THOR should accomplish quite a bit of work. This can be achieved by code
shipping: portions of the application are pushed into THOR and run on the THOR side
of the boundary. Of course such code must first be checked for type-safety; this can be
accomplished by verifying the code using a bytecode or assembler verifier [MWCG98,
M 99]. Once verified the code can be stored in THOR so that it can be used in the
future without further checking. Information about the benefit of code shipping and
other optimizations at the THOR boundary can be found in [LACZ96, BL94].

3 Implementation Architecture

The next several sections describe how we achieve good performance. Our implementa-
tion requirements were particularly challenging because we wanted a system that would
perform well in a large-scale, wide-area, distributed environment. We wanted to support
very large object universes, very small objects, very large numbers of sessions running
concurrently, and world-wide distribution of the machines concurrently accessing THOR.

Our implementation makes use of a client/server architecture. Persistent objects
are stored at servers; each object resides at a particular server, although objects can
be moved from one server to another. We keep persistent objects at servers because it
is important to provide continuous access to objects and this cannot be ensured when
persistent storage is located at client machines (e.g., the machine’s owner might turn it
off). There can be many servers; in a large system there might be tens of thousands of
them. Furthermore, an application might need to use objects stored at many different
servers.

server

OROR

server

Thor client

client machine

C++ veneer

client machine

OROR

THOR

application

Thor client

application

Tcl veneer

Fig. 2. Architecture of THOR Implementation

Applications run at clients on cached copies of persistent objects. This architecture
is desirable because it supports scalability; it reduces the load on servers by offload-
ing work to clients, thus allowing servers to handle more clients. Figure 2 shows the
THOR architecture. The figure shows each server with a number of replicas; THOR uses
replication to provide highly-available access to persistent objects.

3.1 Object Format

Servers store objects on disk in pages. To simplify cache management, objects are
required not to span page boundaries. Pages are large enough that this does not cause
significant internal fragmentation; for example, the average size of objects accessed by
most traversals of the OO7 benchmark [CDN93] in THOR is 29 bytes, while our current
page size is 8 KB. Objects larger than a page are represented using a tree.

Our design for the format of objects had the goal of keeping objects small; this
is important because it has a large impact on performance [WD94, MBMS95]. Our

objects are small primarily because object references (or orefs) are only 32 bits. Orefs
refer to objects at the same server; objects point to objects at other servers indirectly via
surrogates. A surrogate is a small object that contains the identifier of the target object’s
server and its oref within that server; this is similar to designs proposed in [Bis77,
Mos90, DLMM94]. Surrogates will not impose much penalty in either space or time,
assuming the database can be partitioned among servers so that inter-server references
are rare and are followed rarely; we believe these are realistic assumptions.

Object headers are also 32 bits. They contain the oref of the object’s class object,
which contains information such as the number and types of the object’s instance
variables.

An oref is a pair consisting of a 22-bit pid and a 9-bit oid (the remaining bit is
used at the client as discussed in Section 5.1). The pid identifies the object’s page and
allows fast location of the page both on disk and in the server cache. The oid identifies
the object within its page but does not encode its location. Instead, a page contains an
offset table that maps oids to 16-bit offsets within the page. The offset table has an
entry for each existing object in a page; this 2-byte extra overhead, added to the 4 bytes
of the object header, yields a total overhead of 6 bytes per object. The offset table is
important because it allows servers to compact objects within their pages independently
from other servers and clients, e.g., when doing garbage collection. It also provides a
larger address space, allowing servers to store a maximum of 2 G objects consuming a
maximum of 32 GB; this size limitation does not unduly restrict servers, since a physical
server machine can implement several logical servers.

Our design allows us to address a very large database. For example, a server identifier
of 32 bits allows 232 servers and a total database of 267 bytes. However, our server iden-
tifiers can be larger than 32 bits; the only impact on the system is that surrogates will be
bigger. In contrast, most systems that support large address spaces use very large point-
ers, e.g., 64-bit [CLFL94, LAC 96], 96 [Kos95], or even 128-bit pointers [WD92]. In
Quickstore [WD94], which also uses 32-bit pointers to address large databases, storage
compaction at servers is very expensive because all references to an object must be
corrected when it is moved (whereas our design makes it easy to avoid fragmentation).

3.2 Implementation Overview

Good performance for a distributed object storage system requires good solutions for
client cache management, storage management at servers, and concurrency control
for transactions. Furthermore, all of our techniques have to work properly when there
are crashes; in particular there must not be any loss of persistent information, or any
incorrect processing of transactions when there are failures. Our solutions in these areas
are described in subsequent sections. Here we discuss our overall strategy.

When an application requests an object that is not in the client cache, the client
fetches that object’s page from the server. Fetching an entire page is a good idea because
there is likely to be some locality within a page and therefore other objects on the page
are likely to be useful to the client; also page fetches are cheap to process at both clients
and servers.

However, an application’s use of objects is not completely matched to the way objects
are clustered on disk and therefore not all objects on a page are equally useful within an

application session. Therefore our caching strategy does not retain entire pages; instead
it discards unuseful objects but retains useful ones. This makes the effective size of the
client cache much larger and allows us to reduce the number of fetches due to capacity
misses. Our cache management strategy, hybrid adaptive caching, or HAC, is discussed
in Section 5.

To avoid communication between clients and servers, we use an optimistic concur-
rency control scheme. This scheme is called Clock-based Lazy Optimistic Concurrency
Control or CLOCC. The client performs the application transaction and tracks its usage
of objects without doing any concurrency control operations; at the commit point, it
communicates with the servers, and the servers decide whether a commit is possible.
This approach reduces communication between clients and servers to just fetches due
to cache misses, and transaction commits. Our concurrency control scheme is discussed
in Section 4.

When a transaction commits, we send the new versions of objects it modified to
the servers. We cannot send the pages containing those objects, since the client cache
does not necessarily contain them, and furthermore, sending entire pages would be
expensive since it would result in larger commit messages. Therefore we do object
shipping at commit time. The server ultimately needs to store these objects back in
their containing pages, in order to preserve spatial locality; however, if it accomplished
this by immediately reading the containing pages from disk, performance would be
poor [OS94]. Therefore we have developed a unique way of managing storage, using
a modified object buffer, or MOB, that allows us to defer writing back to disk until a
convenient time. The MOB is discussed in Section 6.

In addition to CLOCC, HAC, and the MOB, THOR also provides efficient garbage
collection, and it provides support for high availability via replication. Our garbage
collection approach partitions the heap into regions that are small enough to remain
in main memory while being collected; in addition we record the information about
inter-partition references in a way that avoids disk access or allows it to be done
in the background. More information about our techniques, and also about how we do
distributed collection, can be found in [ML94, ML97b, ML97a, ML97c]. Our replication
algorithm is based on that used in the Harp file system [LGG 91, Par98].

4 Concurrency Control

Our approach to concurrency control is very fine-grained; concurrency control is done at
the level of objects to avoid false conflicts [CFZ94]. In addition our approach maximizes
the benefit of the client cache by avoiding communication between clients and servers
for concurrency control purposes.

We avoid communication by using optimistic concurrency control. The client ma-
chine runs an application transaction assuming that reads and writes of objects in the
cache are permitted. When the transaction attempts to commit, the client informs a
server about the reads and writes done by that transaction, together with the new values
of any modified objects. The server determines whether the commit can occur by seeing
whether it can serialize the transaction relative to other transactions; if the transaction
used objects at multiple servers, a two-phase commit protocol will be used[GR93]. If

the commit can occur, the modifications are made persistent; otherwise the client is told
to abort the transaction.

When a commit happens, if copies of objects modified by this transaction exist in
other client caches, those copies will become stale. Transactions running at those other
client machines will be unable to commit if they use the stale objects. Therefore, servers
track such modifications and send invalidations to the affected clients. An invalidation
identifies objects that have been modified since they were sent to the client; the client
discards these objects from its cache (if they are still there) and aborts its current
transaction if it used them. Invalidations are piggybacked on other messages sent to the
client, so that extra communication is not needed for them.

Now we describe in more detail how our concurrency control scheme works. Even
more detail can be found in [Gru97, Ady94, AGLM95].

4.1 Clients

As an application transaction runs, the client keeps track of the objects it reads and
writes in the ROS (read object set) and MOS (modified object set), respectively; the
MOS is always a subset of the ROS (modified objects are entered in both sets). We also
store a copy of the current (pre-transaction) state of each modified object in an undo
log. This tracking is done as part of running methods on the object. The ROS, MOS,
and undo log are cleared at the start of each transaction.

If the application requests a commit, the MOS, ROS, and copies of all modified
objects are sent to one of the servers that stores objects used by that transaction. The
server will either accept or reject the commit. If the commit is rejected, or if the
application requests an abort, the client uses the undo log to restore the pre-transaction
states of modified objects. The undo log is an optimization; it may be discarded by the
cache replacement algorithm. If a transaction aborts after its undo log is discarded, the
client invalidates the cached copies of the objects modified by the transaction.

The client also processes invalidation messages. It discards the invalid objects if
they are present in the cache, and then uses the MOS and ROS to determine whether the
current transaction used any invalid objects. In this case, the transaction is aborted but
the states of modified invalidated objects are not restored.

The client notifies servers when it has processed invalidations and when pages are
discarded from its cache. This information is sent in the background, piggybacked on
other messages (e.g., fetches) that the client is sending to the server.

4.2 Servers

When a server receives a commit request, it assign the transaction a timestamp. This
timestamp is obtained by reading the time of the server’s clock and concatenating it
with the server’s id to obtain a unique number. We assume that server clocks are loosely
synchronized to within a few tens of milliseconds of one another. This assumption is
not needed for correctness, but improves performance since it allows us to make time-
dependent decisions, e.g., we are able to discard old information. The assumption about
loosely-synchronized clocks is a reasonable one for current systems [Mil92].

The server then acts as coordinator of a two-phase commit protocol; all servers
where objects used by the transaction reside act as participants. The coordinator sends
prepare messages to the participants, which validate the transaction by checking locally
whether the commit is acceptable; participants then send an acceptance or refusal to the
coordinator. If all participants accept, the transaction commits and otherwise it aborts;
in either case the coordinator notifies the client about the decision. Then the coordinator
carries out a second phase to inform the participants about the decision. (If only one
server is involved, we avoid the two-phase protocol entirely, and read-only participants
never participate in phase two.)

With this protocol, the client learns of the commit/abort decision after four message
delays. In fact we run an optimized protocol in which the client selects the transaction’s
timestamp and communicates with all participants directly; this reduces the delay to three
messages for read/write transactions. For read-only transactions, participants send their
decision directly to the client, so that there are just two message delays. Furthermore,
we have developed a way to commit read-only transactions entirely at the client almost
all the time [Ady99].

Now we discuss how validation works. We use backward validation[Hae84]: the
committing transaction is compared with other committed and committing transactions
but not with active transactions (since that would require additional communication
between clients and servers).

A transaction’s timestamp determines its position in the serial order and therefore
the system must check whether it can commit the transaction in that position. For it to
commit in that position the following conditions must be true:

1. for each object it used (read or modified), it must have used the latest version, i.e.,
the modification installed by the latest committed transaction that modified that
object and that is before it in the serialization order.

2. it must not have modified any object used by a committing or committed transaction
that follows it in the serialization order. This is necessary since otherwise we cannot
guarantee condition (1) for that later transaction.

A server validates a transaction using a validation queue, or VQ, and invalid sets. The
VQ stores the MOS and ROS for committed and committing transactions. For now we
assume that the VQ grows without bound; we discuss how its entries are removed below.
If a transaction passes validation, it is entered in the VQ as a committing transaction;
if it aborts later it is removed from the VQ while if it commits, its entry in the VQ is
marked as committed.

The invalid set lists pending invalidations for a client. As soon as a server knows
about a commit of a transaction, it determines what invalidations it needs to send to
what clients. It makes this determination using a directory, which maps each client to
a list of pages that have been sent to it. When a transaction commits, the server adds a
modified object to the invalid set for each client that has been sent that object’s page;
then it marks the VQ entry for the transaction as committed. As mentioned, information
about invalid sets is piggybacked on messages sent to clients. An object is removed from
a client’s invalid set when the server receives an ack for the invalidation from the client.
A page is removed from the page list for the client when the server is informed by the
client that it has discarded the page.

A participant validates a transaction as follows. First, it checks whether any objects
used by a transaction T are in the invalid set for T’s client; if so T must abort because
it has used a stale version of some object. Otherwise, the participant does the following
VQ checks:

1. For each uncommitted transaction S with an earlier timestamp than T, if S’s MOS
intersects T’s ROS, T must abort. We abort T only if S is uncommitted since
otherwise T could be aborted unnecessarily (recall that the check against the invalid
set ensures that T read the last versions produced by committed transactions).
However, S might commit and if it did we would not be able to commit T since it
missed a modification made by S. Of course, S might abort instead, but since this is
an unlikely event, we simply abort T immediately rather than waiting to see what
happens to S.

2. For each transaction S with later timestamp than T, T must abort if:
(a) T’s MOS intersects S’s ROS. T cannot commit because if it did, a later trans-

action S would have missed its modifications. Again, we abort T even if S has
not yet committed because S is highly likely to commit.

(b) T’s ROS intersects S’s MOS. If S is committed, the abort is necessary since in
this case T has read an update made by a later transaction (we know this since
T passed the invalid-set test). If S is uncommitted, we could allow T to commit;
however, to ensure that external consistency [Gif83] is also provided, we abort
T in this case as well.

If validation fails because of test 2b (when S is committed) or test 2a, it is possible
that T could commit if it had a later timestamp. Therefore, we retry the commit of
T with a later timestamp.

We use time to keep the VQ small. We maintain a threshold timestamp, VQ.t, and
the VQ does not contain any entries for committed transactions whose timestamp is less
than VQ.t. An attempt to validate a transaction whose timestamp is less than VQ.t will
fail, but such a situation is unlikely because of our use of synchronized clocks. We keep
VQ.t below the current time minus some delta that is large enough to make it highly
likely that prepare messages for transactions for which this server is a participant will
arrive when their timestamp is greater than the threshold. For example, a threshold delta
of five to ten minutes would be satisfactory even for a widely-distributed network.

When transactions prepare and commit we write the usual information (the ROS,
MOS, and new versions of modified objects) to the transaction log. This is necessary
to ensure that effects of committed transactions survive failures. The log can be used
during recovery to restore the VQ; communication with clients is necessary to restore
the directories, and the invalid sets can then be recovered using information in the log.
Recovery of the invalid sets is conservative and might lead to some unnecessary aborts,
but failures are rare so that this possibility is not a practical problem.

4.3 Discussion

Our optimistic scheme is efficient in terms of space and processing time because our
data structures are small (the VQ and the invalid sets). Directories could be large, but in

this case we can simply keep coarser information; the cost would be larger invalid sets,
and more invalidations piggybacked on messages sent to the client, but no extra aborts
would result.

We have shown that our scheme performs well in practice by comparing its perfor-
mance to that of other schemes; the results are reported in [AGLM95, Gru97]. In partic-
ular we compared its performance to that of adaptive callback locking [CFZ94, ZCF97],
which is considered to be the strongest competitor. Our results show that our approach
outperforms adaptive callback locking in all reasonable environments and almost all
workloads. We do better both on low contention workloads, which are likely to be the
common case, and also on high contention workloads. These experiments were per-
formed under simulation [AGLM95, Gru97]; they allowed us to show that our results
scale to systems with lots of clients and servers.

When there is high contention, our optimistic scheme has more aborts while a
locking scheme has more delay. Our scheme performs well because the cost of aborts is
low: we abort early (e.g., when an invalidation arrives at the client), and when we rerun
the transaction we are able to run quickly because much of what is needed is already in
the client cache, including the previous states of modified objects. Furthermore, most of
the extra work due to aborts occurs at the clients, rather than at the servers, which are the
scarce resource. Locking schemes have a larger impact on the servers, and the delays
due to lock contention can be longer than our delays due to rerunning transactions after
aborts.

Our scheme assumes that a transaction’s modifications fit in the client cache; we
believe this is reasonable for today’s machines given the very efficient way we manage
the cache (see Sections 5 and 7). Our results apply only to client/server systems in which
transactions run at the clients; if transactions ran at servers, the extra work due to aborts
would slow down all clients rather than just the client whose transaction aborted, so that
optimism may not be the best approach.

5 Hybrid Adaptive Caching

Most persistent object systems manage the client cache using page caching [LLOW91,
WD94, SKW92]; such systems fetch and discard entire pages. These systems have
low miss penalties because it is simple to fetch and replace fixed-size units. Also,
page caching can achieve low miss rates provided clustering of objects into pages is
good. However, it is not possible to have good clustering for all application access
patterns [TN91, CS89, Day95]. Furthermore, access patterns may evolve over time,
and reclustering will lag behind because effective clustering algorithms are very expen-
sive [TN91] and are performed infrequently. Therefore, pages contain both hot objects,
which are likely to be used by an application in the near future, and cold objects, which
are not likely to be used soon. Bad clustering, i.e., a low fraction of hot objects per page,
causes page caching to waste client cache space on cold objects that happen to reside in
the same pages as hot objects.

Object caching systems [Ont92, D 90, LAC 96, C , TG90, WD92, K 89] allow
clients to cache hot objects without caching their containing disk pages and can thus
achieve lower miss rates than page caching when clustering is bad. However, object

caching has two problems: objects are variable-sized units, which leads to storage
fragmentation, and there are many more objects than pages, which leads to high overhead
for bookkeeping and for maintaining per-object usage statistics.

Our cache management scheme is called HAC, for hybrid adaptive caching. HAC

is a hybrid between page and object caching that combines the virtues of each — low
overheads and low miss rates — while avoiding their problems. It partitions the cache
between objects and pages adaptively based on the current application behavior: pages in
which locality is high remain intact, while only hot objects are retained for pages in which
locality is poor. Hybrid object and page caching was introduced in [OS95, Kos95] but
this earlier work did not provide solutions to the crucial problems of cache partitioning
and storage fragmentation.

HAC partitions the client cache into page-sized frames and fetches entire pages from
the server. To make room for an incoming page, it

– selects some page frames for compaction,
– discards the cold objects in these frames,
– compacts the hot objects to free one of the frames.

The approach is illustrated in Figure 3.

Hot object

Cold object

Free
Frame

Before compaction

After compaction

1

2

3

4

5

6 7

tFrame 14 Frame 2 Frame 53

Frame 14 Frame 2 Frame 53

1

2

3

4
5

6
7

Fig. 3. Compaction of pages by HAC

Now we explain the scheme in more detail; even more information can be found
in [CALM97].

5.1 Client Cache Organization

Pages at the client have the same size and structure as at the server to avoid extra copies.
However, it is not practical to represent object pointers as orefs in the client cache because
each pointer dereference would require an expensive computation to obtain the object’s

memory location. Therefore, clients perform pointer swizzling [TG90, Mos92, WD92],
i.e., replace the orefs in objects’ instance variables by virtual memory pointers to speed
up pointer traversals. HAC uses indirect pointer swizzling [TG90]; the oref is translated
to a pointer to an entry in an indirection table and the entry points to the target object.
(In-cache pointers are 32 bits just like orefs. On 64-bit machines; HAC simply ensures
that the cache and the indirection table are located in the lower 232 bytes of the address
space.) Indirection allows HAC to move and evict objects from the client cache with low
overhead; indirection has also been found to simplify page eviction in a page-caching
system [MS95].

Both pointer swizzling and installation of objects, i.e., allocating an entry for the
object in the indirection table, are performed lazily. Pointers are swizzled the first time
they are loaded from an instance variable into a register [Mos92, WD92]; the extra bit
in the oref is used to determine whether a pointer has been swizzled or not. Objects are
installed in the indirection table the first time a pointer to them is swizzled. The size
of an indirection table entry is 16 bytes. Laziness is important because many objects
fetched to the cache are never used, and many pointers are never followed. Furthermore,
lazy installation reduces the number of entries in the indirection table, and it is cheaper
to evict objects that are not installed.

HAC uses a novel lazy reference counting mechanism to discard entries from the
indirection table [CAL97]. The reference count in an entry is incremented whenever a
pointer is swizzled and decremented when objects are evicted, but no reference count
updates are performed when objects are modified. Instead, reference counts are corrected
lazily when a transaction commits, to account for the modifications performed during
the transaction.

5.2 Compaction

HAC computes usage information for both objects and frames as described in Section 5.3,
and uses this information to select a victim frame to compact, and also to identify
which of objects to retain and which to discard. Then it moves retained objects from

into frame , the current target for retained objects, laying them out contiguously
to avoid fragmentation. Indirection table entries for retained objects are corrected to
point to their new locations; and entries for discarded objects are modified to indicate
that the objects are no longer present in the cache. If all retained objects fit in , the
compaction process ends and can be used to receive the next fetched page. If some
retained objects do not fit in , becomes the new target and the remaining objects
are compacted inside to make all the available free space contiguous. Then, another
frame is selected for compaction and the process is repeated for that frame.

This compaction process preserves locality: retained objects from the same disk
page tend to be located close together in the cache. Preserving locality is important
because it takes advantage of any spatial locality that the on-disk clustering algorithm
may be able to capture.

When disk page is fetched, some object in may already be in use, cached in
frame . HAC handles this in a simple and efficient way. No processing is performed
when is fetched. Since the copy of in is installed in the indirection table, ’s
copy in will not be installed or used. If there are many such unused objects in , its

frame will be a likely candidate for compaction, in which case all its uninstalled copies
will simply be discarded. If instead is freed, its copy of is moved to (if is
retained) instead of being compacted as usual. In either case, we avoid both extra work
and foreground overhead.

5.3 Replacement

Now we discuss how we do page replacement. We track object usage, use this to compute
frame usage information from time to time, select frames for removal based on the frame
usage information, and retain or discard objects within the selected frame based on how
their usage compares to that of their frame. Replacement is done in the background.
HAC always maintains a free frame, which is used to store the incoming page. Another
frame must be freed before the next fetch, which can be done while the client waits for
the fetch response.

Object Usage Computation Our object usage calculation takes both recency and fre-
quency of access into account, since this has been shown to outperform LRU [JS94,
OOW93, RD90], but we do this with very low overhead. Headers of installed objects
contain 4 usage bits. The most significant usage bit is set each time a method is invoked
on the object. Usage bits are cheap in both space and time; only two extra instruc-
tions and no extra processor cache misses are needed to do a method call. They are
much cheaper in both space and time than maintaining either an LRU chain or the data
structures used in [JS94, OOW93, RD90].

The usage value is decayed periodically by shifting right by one; thus, each usage bit
corresponds to a decay period and it is set if the object was accessed in that period. Our
scheme considers objects with higher usage (interpreting the usage as a 4-bit integer) as
more valuable, i.e., objects that were accessed in more recent periods are more valuable
and when the last accesses to two objects occurred in the same period, their value is
ordered using the history of accesses in previous periods. Therefore, our scheme acts
like LRU but with a bias towards protecting objects that were frequently accessed in the
recent past. To further increase this bias and to distinguish objects that have been used
in the past from objects that have never been used, we add one to the usage bits before
shifting; we found experimentally that this increment reduces miss rates by up to 20%
in some workloads. We set the usage of invalid objects to 0, which ensures their timely
removal from the cache.

Frame Usage Computation We could implement replacement by evicting the objects
with the lowest usage in the cache, but this approach may pick objects from a large
number of frames, which means we would need to compact all these frames. Therefore,
we compute usage values for frames and use these values to select frames to compact.

Our goals in freeing a frame are to retain hot objects and to free space. The frame
usage value reflects these goals. It is a pair T, H . T is the threshold: when the frame
is discarded, only hot objects, whose usage is greater than , will be retained. is the
fraction of objects in the frame that are hot at threshold . We require to be less
than the retention fraction, , where is a parameter of our system; we have found

2

4

6

3

5

3

Usage: (3, 0.5)

0

2

5

0

0

0

0

Usage: (0, 0.29)

Hot object

Cold object

Frame F1 Frame F2

Fig. 4. Usage statistics for frames

experimentally that 2 3 works well. is the minimum usage value that results in
an that meets this constraint. Frame usage is illustrated (for = 2/3) in Figure 4. For
frame F1, = 2 would not be sufficient since this would lead to = 5/6; therefore we
have = 3. For frame F2, = 0 provides a small enough value for .

We use object count as an estimate for the amount of space occupied by the objects
because it is expensive to compute this quantity accurately; it is a reasonable estimate if
the average object size is much smaller than a page.

HAC uses a no-steal [GR93] cache management policy: objects that were modified
by a transaction cannot be evicted from the cache until the transaction commits. (Objects
read by the current transactions, and old versions in the undo log, can be discarded.) The
frame usage is adjusted accordingly, to take into account the fact that modified objects
are retained regardless of their usage value: when computing the usage of a frame, we
use the maximum usage value for modified objects rather than their actual usage value.

Selection of Victims The goal for replacement is to free the least valuable frame. Frame
is less valuable than frame if its usage is lower:

F.T G.T or (F.T = G.T and F.H G.H)

i.e., either ’s hot objects are likely to be less useful than ’s, or the hot objects are
equally useful but more objects will be evicted from than from . For example, in
Figure 4, 2 has lower usage than 1.

Although in theory one could determine the least valuable frame by examining all
frames, such an approach would be much too expensive. Therefore, HAC selects the
victim from among a set of candidates. Frames are added to this set at each fetch; we
select frames to add using a variant of the clock algorithm [Cor69]. A frame’s usage
is computed when it is added to the set; since this computation is expensive, we retain
frames in the candidate set, thus increasing the number of candidates for replacement
at later fetches without increasing replacement overhead. We remove frames from the

candidate set if they survive enough fetches; we have found experimentally that removing
frames after 20 fetches works well.

The obvious strategy is to free the lowest-usage frame in the candidate set. However,
we modify this strategy a little to support the following important optimization.

As discussed earlier, HAC relies on the use of an indirection table to achieve low
cache replacement overhead. Indirection can increase hit times, because each object
access may require dereferencing the indirection entry’s pointer to the object, and
above all, may introduce an extra cache miss. This overhead is reduced by ensuring the
following invariant: an object for which there is a direct pointer in the stack or registers
is guaranteed not to move or be evicted. The Theta compiler takes advantage of this
invariant by loading the indirection entry’s pointer into a local variable and using it
repeatedly without the indirection overhead; other compilers could easily do the same.
We ran experiments to evaluate the effect of pinning frames referenced by the stack or
registers and found it had a negligible effect on miss rates.

To preserve the above invariant, the client scans the stack and registers and con-
servatively determines the frames that are being referenced from the stack. It frees the
lowest-usage frame in the candidate set that is not accessible from the stack or registers;
if several frames have the same usage, the frame added to the candidate set most recently
is selected, since its usage information is most accurate.

When a frame fills up with compacted objects, we compute its usage and insert it in
the candidate set. This is desirable because objects moved to that frame may have low
usage values compared to pages that are currently present in the candidate set.

The fact that the usage information for some candidates is old does not cause valuable
objects to be discarded. If an object in the frame being compacted has been used since
that frame was added to the candidate set, it will be retained, since its usage is greater
than the threshold. At worst, old frame-usage information may cause us to recover less
space from that frame than expected.

6 The Modified Object Buffer

Our use of HAC, and also the fact that we discard invalid objects from the client cache,
mean that it is impossible for us to send complete pages to the server when a transaction
commits. Instead we need to use object shipping. Ultimately, however, the server must
write objects back to their containing page in order to preserve clustering. Before
writing the objects it is usually necessary to read the containing page from disk, since
it is unlikely in a system like ours that the containing page will be in memory when it
is needed [MH92]. Such a read is called an installation read [OS94]. Doing installation
reads while committing a transaction performs poorly [WD95, OS94] so that some other
approach is needed.

Our approach is to use a volatile buffer in which we store recently modified objects;
the buffer is called the MOB (for modified object buffer). When modified objects arrive
at the server they are stored in the MOB instead of being installed in a page cache. The
modifications are written to disk lazily as the MOB fills up and space is required for new
modifications. Only at this point are installation reads needed.

The MOB architecture has several advantages over a conventional page buffer. First, it
can be used in conjunction with object shipping, and yet installation reads can be avoided
when transactions commit. Second, less storage is needed to record modifications in
the MOB than to record entire modified pages in a page cache. Therefore the MOB can
record the effects of more transactions than a page cache, given the same amount of
memory; as a result, information about modifications can stay in the MOB longer than
in a page cache. This means that by the time we finally move an object from the MOB to
disk, there is a high probability that other modifications have accumulated for its page
than in the case of a page cache. We call this effect write absorption. Write absorption
leads to fewer disk accesses, which can improve system performance.

 Data Disk

St
ab

le
 T

ra
na

ct
io

n
L

og

Cache

Mob

Commit

Delayed
 Writes

Fig. 5. Server Organization

Now we describe how the MOB works; more information can be found in [Ghe95].
The server contains some volatile memory, disk storage, and a stable transaction log
as shown in Figure 5. The disk provides persistent storage for objects; the log records
modifications of recently committed transactions. The volatile memory is partitioned
into a page cache and a MOB. The page cache holds pages that have been recently fetched
by clients; the MOB holds recently modified objects that have not yet been written back
into their pages on disk.

Modifications of committed transactions are inserted into the MOB as soon as the
commit has been recorded in the log. They are not written to disk immediately. Instead
a background flusher thread lazily moves modified objects from the MOB to disk. The
flusher runs in the background and does not delay commits unless the MOB fills up
completely with pending modifications.

The MOB does not replace the transaction log, which is used to ensure that transac-
tions commit properly in spite of failures. After a failure the MOB can be restored from
the log. When objects are removed from the MOB, the corresponding records can also
be removed from the log.

Pages in the cache are completely up-to-date: they contain the most current versions
of their objects. However, pages on disk do not reflect modifications of recent transac-
tions, i.e., modifications in the MOB. Therefore a fetch request is processed as follows:
If the needed page is not in the page cache, it is read into the cache and then updated
to reflect all the recent modifications of its objects in the MOB. Then the page is sent
to the client. When the page is evicted from the cache, it is not written back to disk
even if it contains recent modifications; instead we rely on the flusher to move these

modifications to disk.
The page cache is managed using a LRU policy, but the MOB is managed in a FIF0

order to allow the log to be truncated in a straightforward way. The flusher scans the
MOB and identifies a set of pages that should be written to disk to allow a prefix of the
log to be truncated. This set of pages is read into the page cache if necessary (these
are the installation reads). Then all modifications for those pages are installed into the
cached copies and removed from the MOB. Then the pages are written to disk, and
finally a prefix of the log is truncated. Therefore the operation of the flusher replaces
the checkpointing process used for log truncation in most database systems [GR93].
The log may contain records for modifications that have already been installed on disk
but this is not a problem: the modifications will be re-installed if there is a failure (and
re-entered in the MOB), but failures are rare so that the extra cost to redo the installs is
not an issue and correctness is not compromised since installation is idempotent.

The MOB is implemented in a way that makes both fetches and the flusher run fast.
The flusher needs to identify pages to be flushed; it also needs to find all modifications
for these pages, and remove them from the MOB without leaving any holes. Fetching
requires a quick way to find any modifications for the requested page. We accommodate
these requirements by storing the modified objects in a heap that is managed using a
standard malloc/free memory allocator. The contents of the heap are chained together
in a scan list that can be used to identify the pages that need to be written out so that
the MOB contents can be discarded in log order. Finally, a hash table maps from page
identifiers to the set of objects in the MOB that belong to that page. This hash table is
used to handle client fetch requests, and also by the flusher to find the set of all objects
belonging to a page that is being written to disk.

Writes to disk are actually done using units called segments, which are larger than
pages and correspond roughly in size to a disk sector. Using segments instead of pages
allows us to take advantage of disk characteristics. Furthermore, segments are useful
from an application perspective since they provide a larger unit for clustering, and when
such clustering exists there can be more write absorption using segments than pages.
Thus segments improve performance in two ways: by using the disk more efficiently
and by improving write absorption.

7 Performance Evaluation

This section evaluates the performance of THOR. It compares THOR with a system, called
C++/OS, that does not implement safe sharing or transactions and is directly based on
abstractions and mechanisms offered by current operating systems. This system does
not provide the full functionality of THOR. It provides a form of transparent persistency
for objects but it does not support transactions or safe sharing.

The comparison between the two systems is interesting because C++/OS indicates
the kind of performance that could be obtained by running a persistent object store
directly on current operating systems; also, C++/OS is believed to perform extremely
well because the mechanisms it uses have been the focus of extensive research and
development and are fairly well optimized. Our results show that THOR significantly
outperforms C++/OS in the common case when there are cold or capacity misses in the

client cache, or when objects are modified. Furthermore, THOR outperforms C++/OS
even though C++/OS implements a much less powerful programming model.

7.1 Experimental Setup

Before presenting the analysis, we describe the experimental setup. Our workloads
are based on the OO7 benchmark [CDN94]; this benchmark is intended to match the
characteristics of many different CAD/CAM/CASE applications. The OO7 database
contains a tree of assembly objects, with leaves pointing to three composite parts chosen
randomly from among 500 such objects. Each composite part contains a graph of atomic
parts linked by connection objects; each atomic part has 3 outgoing connections. All
our experiments ran on the medium database, which has 200 atomic parts per composite
part. The traversals we ran and the environment are described below.

C++/OS The C++/OS system uses a C++ implementation of OO7. This implementation
uses a modified memory allocator that creates objects in a memory-mapped file in the
client machine. This file is stored by a server and it is accessed by the client operating
system using the NFS Version 3 distributed file system protocol.

The operating system manages the client cache by performing replacement at the
page granularity (8 KB) and it also ships modified pages back to the server. We added
an msync call at the end of each traversal to force any buffered modifications back to
the server.

C++/OS uses 64-bit object pointers so that more than 4 GB of data can be accessed;
this is the same approach taken in [CLFL94]. The result is a database that is 42% larger
than THOR’s, but the system does not incur any space or time overhead for swizzling
pointers.

Environment The objects in the databases in both systems are clustered into 8 KB.
In THOR, the database was stored by a replicated server with two replicas and a wit-
ness [LGG 91], i.e., a server that can tolerate one fault. Each replica stored the database
on a Seagate ST-32171N disk, with a peak transfer rate of 15.2 MB/s, an average read
seek time of 9.4 ms, and an average rotational latency of 4.17 ms [Sea97]. The THOR

database takes up 38 MB in our implementation. The C++/OS database is also stored
on a Seagate ST-32171N disk; it takes up 54 MB since it uses 64-bit pointers.

The database was accessed by a single client. Both the server and client machines
were DEC 3000/400 Alpha workstations, each with a 133 MHz Alpha EV4 (21064)
processor, 160 MB of memory and Digital Unix. They were connected by a 10 Mb/s
Ethernet and had DEC LANCE Ethernet interfaces. In THOR, each server replica had a
36 MB cache (of which 6 MB were used for the MOB); in C++/OS, the NFS server had
137 MB of cache space. We experimented with various sizes for the client cache.

All the results we report are for hot traversals: we preload the caches by running a
traversal twice and timing the second run. There are no cold-cache misses in either the
server or the client cache during a hot traversal. This is conservative; THOR outperforms
C++/OS in cold cache traversals because its database is much smaller.

The C code generated by the Theta compiler for the traversals, the THOR system
code, and the C++ implementation of OO7 were all compiled using GNU’s gcc with
optimization level 2.

Traversals The OO7 benchmark defines several database traversals; these perform a
depth-first traversal of the assembly tree and execute an operation on the composite parts
referenced by the leaves of this tree. Traversals T1 and T6 are read-only; T1 performs
a depth-first traversal of the entire composite part graph, while T6 reads only its root
atomic part. Traversals T2a and T2b are identical to T1 except that T2a modifies the
root atomic part of the graph, while T2b modifies all the atomic parts.

In general, some traversals will match the database clustering well while others
will not, and we believe that on average, one cannot expect traversals to use a large
fraction of each page. For example, Tsangaris and Naughton [TN91] found it was
possible to achieve good average use only by means of impractical and expensive
clustering algorithms; an 2 4 algorithm achieved average use between 17% and
91% depending on the workload, while an log algorithm achieved average use
between 15% and 41% on the same workloads. Chang and Katz [CS89] observed that
real CAD applications had similar access patterns. Furthermore, it is also expensive to
collect the statistics necessary to run good clustering algorithms and to reorganize the
objects in the database according to the result of the algorithm [GKM96, MK94]. These
high costs bound the achievable frequency of reclusterings and increase the likelihood of
mismatches between the current workload and the workload used to train the clustering
algorithm; these mismatches can significantly reduce the fraction of a page that is
used [TN91].

The OO7 database clustering matches traversal T6 poorly but matches traversals
T1, T2a and T2b well; our results show that on average T6 uses only 3% of each page
whereas the other traversals use 49%. We only present results for traversals T1, T2a and
T2b. Since the performance of THOR relative to a page-based system improves when
the clustering does not match the traversal, this underestimates the performance gain
afforded by our techniques.

7.2 Read-Only Traversals

This section evaluates the performance of THOR running a hot read-only traversal, T1.
It starts by presenting a detailed analysis of the overhead when all the pages accessed
by T1 fit in the client cache and there are no cold cache misses. Then, it analyzes the
performance for the common case when not all the pages fit in the client cache.

Traversals without cache management Our design includes choices (such as indirec-
tion) that penalize performance when all the pages accessed fit in the client cache to
improve performance in the common case when they do not; this section shows that the
price we pay for these choices is reasonable.

We compare THOR with C++/OS running a T1 traversal of the database. Both systems
run with a 55 MB client cache to ensure that there are no client cache misses.

Table 1 shows where the time is spent in THOR. This breakdown was obtained by
removing the code corresponding to each line and comparing the elapsed times obtained
with and without that code. Therefore, each line accounts not only for the overhead of
executing extra instructions but also for the performance degradation caused by code
blowup. To reduce the noise caused by conflict misses in the direct-mapped processor
caches, we used cord and ftoc, two Digital Unix utilities that reorder procedures in an
executable to reduce conflict misses. We used cord on all THOR executables and on the
C++/OS executable.

T1 (sec)
Exception code 0.86
Concurrency control checks 0.64
Usage statistics 0.53
Residency checks 0.54
Swizzling checks 0.33
Indirection 0.75
C++/OS traversal 4.12

Total (THOR traversal) 7.77

Table 1. Breakdown, Hot T1 Traversal, Without Cache management

The first two lines in the table are not germane to cache management. The exception
code line shows the cost introduced by code to generate or check for various types
of exceptions (e.g., array bounds and integer overflow). This overhead is due to our
implementation of the type-safe language Theta [LAC 96]. The concurrency control
checks line shows what we pay for providing transactions. As we discussed before these
features are very important for safe sharing of persistent objects. Since the C++/OS
system does not offer these features, it incurs no overhead for them.

The next four lines are related to our cache management scheme: usage statistics
accounts for the overhead of maintaining per-object usage statistics, residency checks
refers to the cost of checking indirection table entries to see if the object is in the
cache; swizzling checks refers to the code that checks if pointers are swizzled when
they are loaded from an object; and indirection is the cost of accessing objects through
the indirection table. The indirection costs were computed by subtracting the elapsed
times for the C++/OS traversals from the elapsed times obtained with a THOR front-end
executable from which the code corresponding to all the other lines in the table had been
removed.

Note that the OO7 traversals exacerbate our overheads, because usage statistics,
residency checks and indirection are costs that are incurred once per method call, and
methods do very little in these traversals: assuming no stalls due to the memory hierarchy,
the average number of cycles per method call in the C++ implementation is only 24 for
T1.

Figure 6 presents elapsed time results for the hot T1 traversals without any cache

misses. The results show that the overheads introduced by THOR on hit time are quite
reasonable; THOR adds an overhead relative to C++/OS of 89% on T1. Furthermore, our
results show that this overhead is quickly offset by the benefits of our implementation
techniques in the presence of client cache misses or modifications .

C++/OS Thor
0

2

4

6

8

E
la

ps
ed

 ti
m

e
(s

ec
)

Transactions and safety
Cache management
Traversal

Fig. 6. Elapsed time, Hot T1 traversal, Without Cache Management

Traversals with cache management The previous experiments compared the perfor-
mance of THOR and C++/OS when the client cache can hold all the pages touched by
the traversal. Now we analyze the performance for smaller cache sizes and show that
THOR performs better than C++/OS in this region.

Figure 7 shows elapsed times for the hot T1 traversals with cache management.
We measured running a hot T1 traversal on both systems while varying the amount
of memory devoted to caching at the client. For THOR, this includes the memory used
by the indirection table. The amount of memory available to the client in the C++/OS
system was restricted by using a separate process that locked pages in physical memory.
The elapsed times in THOR do not include the time to commit the transaction. This time
was approximately 1.8 seconds.

The performance gains of THOR relative to C++/OS are substantial because it has
a much lower miss rate. For example, for a cache size of 18 MB, THOR has 4132
client cache misses whereas C++/OS has 16945. The maximum performance difference
between THOR and C++/OS occurs for the minimum cache size at which all the objects
used by the traversal fit in the client cache; THOR performs approximately 15 times
faster than C++/OS in traversal T1. From another perspective, THOR requires less than
half the memory as C++/OS to run traversal T1 without cache management activity.

The miss rate is lower because of HAC and because our objects are smaller. HAC

allows the client to cache only the objects accessed by the traversal rather than their
pages. Since on average T1 uses only 49% of each page, HAC improves performance
significantly. The impact is even bigger in transactions that match the database clus-
tering poorly, e.g., HAC improves performance by up to three orders of magnitude in
T6 [CALM97].

10 20 30 40 50

Client Cache (MB)

0

50

100

150

200

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Good clustering (T1)

C++/OS
Thor

Fig. 7. Elapsed Time, Hot T1 Traversal, With Cache Management

THOR’s swizzling technique and the use of surrogates allow it to use 32-bit pointers,
but at the cost of extra computation and extra space to store the indirection table. As
discussed previously, the C++/OS system avoids these costs but needs to use 64-bit
pointers instead. The result is a space overhead for the database that is two times larger
than the space used up by our indirection table during traversal T1.

C++/OS does not incur any disk reads in the experiments reported in this section
whereas THOR does; the time to read from disk accounts for approximately 20% of
THOR’s miss penalty. This happens because we conservatively allowed the NFS server
in C++/OS to use a 137 MB cache while the THOR server used a 36 MB cache (from
which 6 MB were dedicated to the MOB). THOR’s performance relative to C++/OS would
have been even better if we had not been conservative. More generally, as discussed
in [Bla93], we expect the miss rate in the server cache to be high in real applications.
This will lead to high miss penalties and will further increase our performance gains.

7.3 Read-Write Traversals

All experiments presented so far ran traversal T1, which is read-only. This section
shows that THOR outperforms C++/OS for traversals with updates even when all the
pages accessed fit in the cache. Figure 9 presents elapsed times for hot traversals T2a
and T2b running with a 55 MB client cache. For this cache size, there is no cache
replacement in either of the two systems.

The results show that THOR outperforms C++/OS. The time to run the traversal is
lower in the C++/OS system mainly for the causes discussed in Section 7.2. But the
time to commit the modifications to the server is much lower in THOR for two reasons.
First, THOR ships only the modified objects back to the server whereas C++/OS ships the
modified pages. For example, in T2b, THOR ships back 4.5 MB whereas C++/OS ships
back 25.7 MB. Second, C++/OS installs all the modified pages on disk at the server;

T2a T2b T2a T2b
0

10

20

30

40

50

E
la

ps
ed

 t
im

e
(s

ec
on

ds
) Commit

Sync
Traversal

Thor C++/OS

Fig. 8. Elapsed time, Hot Read-Write traversals, Without Cache Management

the THOR server only inserts the modified objects in the MOB and in the stable log
(i.e., forces the modified objects to the backup replica). This performance gain can be
attributed to the MOB, which enables efficient object shipping by allowing installation
reads to be performed in the background as discussed in Section 6.

The small 6 MB MOB used in these experiments is more than sufficient to absorb
all the modifications in the OO7 traversals. Therefore, there are no installation reads
in these experiments. The detailed study of the MOB architecture in [Ghe95] analyzes
workloads with installation reads and shows that this architecture outperforms a page
shipping system for almost all workloads. The only exception are the rare workloads
that modify almost all the objects they access.

We also ran traversals T2a and T2b in a configuration with cache management. Fig-
ure 9 presents elapsed times for a configuration with a 18 MB client cache. The results
show that with cache management and modifications THOR significantly outperforms
C++/OS. This happens because, in the C++/OS system, the cache replacement mech-
anism is forced to write modified pages back to the server to make room for missing
pages while the traversal is running. This increases the number of page writes relative
to what was shown in Figure 8 and these writes are to random locations. For example,
C++/OS performs 12845 page writes in T2b with cache management and only 3285
writes without cache management. On the other hand, THOR keeps modified objects in
the cache until the transaction commits.

As discussed previously, THOR uses a no-steal [GR93] cache management policy:
modified objects cannot be evicted from the client cache until the current transaction
commits. We claim there is no significant loss in functionality or performance in our
system due to the lack of a steal approach; since object caching retains only the modified
objects and not their pages, it is unlikely that the cache will fill up. Our claim is supported
by the results presented in Figure 9: HAC allows THOR to run traversal T2b in a single
transaction even though this transaction reads and writes an extremely large number of
objects (it reads 500000 objects and writes 100000). Evicting modified pages is needed
in a page-caching system, since the cache is used much less efficiently.

T2a T2b T2a T2b
0

50

100

150

200

250

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Commit
Sync
Traversal

Thor C++/OS

Fig. 9. Elapsed time, Hot Read-Write traversals, With Cache Management (18 MB)

8 Conclusions

THOR provides a powerful programming model that allows applications to safely share
objects across both space and time. It ensures that sharing is safe by allowing objects to
be accessed only by calling their methods. In addition, it provides atomic transactions
to guarantee that concurrency and failures are handled properly.

The paper describes three implementation techniques that enable THOR to support
this powerful model while providing good performance: the CLOCC concurrency control
scheme; the HAC client caching scheme; and the MOB disk management architecture
at servers. It also presents the results of experiments that compare the performance of
THOR to that of C++/OS, which provides persistency using memory mapped files but
does not support safe sharing or transactions. The performance comparison between
THOR and C++/OS is interesting because the latter approach is believed to deliver
very high performance. However, our results show that THOR substantially outperforms
C++/OS in the common cases: when there are misses in the client cache, or when objects
are modified.

The high performance of THOR is due to all three of its implementation techniques.
The MOB provides good performance in modification workloads because it handles small
writes efficiently and reduces communication overhead by allowing object shipping at
transaction commits. HAC has low overhead and takes advantage of object shipping
to reduce capacity misses by managing the client cache at an object granularity. And,
although CLOCC does not show up to full advantage in these experiments (since there
is no concurrency), our performance benefits from its low overhead and the fact that it
avoids introducing extra communication between clients and servers.

We believe these results have important implications for future architectures for
supporting persistence. As object systems become the accepted base for building modern
distributed applications, the semantic gap between file systems and applications will
keep widening. This gap translates into loss of safety and, as indicated by our results,
a loss of performance. The paper shows that there is a very attractive alternative: a
persistent object storage system that provides both a powerful semantic model and high

performance.

Acknowledgements

THOR was the result of the work of many researchers in the Programming Methodology
Group at MIT. The following people were instrumental in designing and implementing
various parts of THOR: Phillip Bogle, Chandrasekhar Boyapati, Dorothy Curtis, Mark
Day, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Umesh Maheshwari, Andrew
Myers, Tony Ng, Arvind Parthasarathi, Quinton Zondervan.

References

[Ady94] A. Adya. Transaction Management for Mobile Objects Using Optimistic Con-
currency Control. Master’s thesis, Massachusetts Institute of Technology, Jan.
1994. Also available as MIT Laboratory for Computer Science Technical Report
MIT/LCS/TR-626.

[Ady99] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, Mar. 1999.

[AGLM95] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic Concur-
rency Control using Loosely Synchronized Clocks. In Proc. of ACM SIGMOD
International Conference on Management of Data, pages 23–34, San Jose, CA, May
1995.

[Bis77] P. B. Bishop. Computer Systems with a Very Large Address Space and Garbage
Collection. Technical Report MIT/LCS/TR-178, Laboratory for Computer Science,
MIT, Cambridge, MA, May 1977.

[BL94] P. Bogle and B. Liskov. Reducing Cross-Domain Call Overhead Using Batched
Futures. In Proc. OOPSLA ’94, pages 341–359. ACM Press, 1994.

[Bla93] M. Blaze. Caching in Large-Scale Distributed File Systems. Technical Report TR-
397-92, Princeton University, January 1993.

[Boy98] C. Boyapati. JPS: A Distributed Persistent Java System. Master’s thesis, Mas-
sachusetts Institute of Technology, Sept. 1998.

[C] M. J. Carey et al. Shoring Up Persistent Applications. In Proc. of ACM SIGMOD
International Conference on Management of Data, pages 383–394, Minneapolis,
MN, May 1994. ACM Press.

[CAL97] M. Castro, A. Adya, and B. Liskov. Lazy Reference Counting for Transactional
Storage Systems. Technical Report MIT-LCS-TM-567, MIT Lab for Computer
Science, June 1997.

[CALM97] M. Castro, A. Adya, B. Liskov, and A. Myers. HAC: Hybrid Adaptive Caching
for Distributed Storage Systems. In Proc. 17th ACM Symp. on Operating System
Principles (SOSP), pages 102–115, St. Malo, France, Oct. 1997.

[CDN93] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark. In Proc. of
ACM SIGMOD International Conference on Management of Data, pages 12–21,
Washington D.C., May 1993.

[CDN94] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 benchmark. Technical
Report; Revised Version dated 7/21/1994 1140, University of Wisconsin-Madison,
1994. At ftp://ftp.cs.wisc.edu/OO7.

[CFZ94] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained Sharing in a Page
Server OODBMS. In Proc. of ACM SIGMOD International Conference on Manage-
ment of Data, pages 359–370, Minneapolis, MN, June 1994.

[CLFL94] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protection
in a Single-Address-Space Operating System. In ACM Transactions on Computer
Systems, volume 12, Feb. 1994.

[Cor69] F. J. Corbato. A Paging Experiment with the Multics System, in Festschrift: In Honor
of P. M. Morse, pages 217–228. MIT Press, 1969.

[CS89] W. W. Chang and H. J. Schek. A Signature Access Method for the Starburst Database
System. In Proceedings of the Fifteenth International Conference on Very Large Data
Bases, pages 145–153, Amsterdam, Netherlands, August 1989.

[D 90] O. Deux et al. The Story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108, March 1990.

[Day95] M. Day. Client Cache Management in a Distributed Object Database. PhD thesis,
Massachusetts Institute of Technology, 1995. Also available as MIT Laboratory for
Computer Science Technical Report MIT/LCS/TR-652.

[DGLM95] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. Where Clauses:
Constraining Parametric Polymorphism. In Proc. OOPSLA ’95, pages 156–168,
Austin TX, Oct. 1995. ACM SIGPLAN Notices 30(10).

[DLMM94] M. Day, B. Liskov, U. Maheshwari, and A. C. Myers. References to Remote Mobile
Objects in Thor. ACM Letters on Programming Languages and Systems, Mar. 1994.

[Ghe95] S. Ghemawat. The Modified Object Buffer: a Storage Management Technique for
Object-Oriented Databases. PhD thesis, Massachusetts Institute of Technology,
1995. Also available as MIT Laboratory for Computer Science Technical Report
MIT/LCS/TR-656.

[Gif83] D. Gifford. Information Storage in a Decentralized Computer System. Technical
Report CSL-81-8, Xerox Corporation, March 1983.

[GKM96] C. Gerlhof, A. Kemper, and G. Moerkotte. On the Cost of Monitoring and Reorga-
nization of Object Bases for Clustering. SIGMOD Record, 25(3):22–27, September
1996.

[GR93] J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Publishers Inc., 1993.

[Gru97] R. Gruber. Optimism vs. Locking: A Study of Concurrency Control for Client-Server
Object-Oriented Databases. PhD thesis, M.I.T., Cambridge, MA, 1997.

[Hae84] T. Haerder. Observations on Optimistic Concurrency Control Schemes. Information
Systems, 9(2):111–120, June 1984.

[JS94] T. Johnson and D. Shasha. A Low Overhead High Performance Buffer Replacement
Algorithm. In Proceedings of International Conference on Very Large Databases,
pages 439–450, 1994.

[K 89] W. Kim et al. Architecture of the ORION Next-Generation Database System. IEEE
Transactions on Knowledge and Data Engineering, 2(1):109–124, June 1989.

[Kos95] D. Kossmann. Efficient Main-Memory Management of Persistent Objects. Shaker-
Verlag, 1995. Dissertation, RWTH Aachen.

[LAC 96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor.
In Proc. of ACM SIGMOD International Conference on Management of Data, pages
318–329, Montreal, Canada, June 1996.

[LACZ96] B. Liskov, A. Adya, M. Castro, and Q. Zondervan. Type-safe Heterogenous Sharing
Can Be Fast. In Proceedings of the 7th International Workshop on Persistent Object
Systems, Cape May, NJ, May 1996.

[LCD 94] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A. C. My-
ers. Theta Reference Manual. Programming Methodology Group Memo 88,
MIT Laboratory for Computer Science, Cambridge, MA, Feb. 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[LGG 91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Repli-
cation in the Harp File System. In Proc. 13th ACM Symp. on Operating System
Principles (SOSP), pages 226–238. ACM Press, 1991.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database Sys-
tem. Comm. of the ACM, 34(10):50–63, October 1991.

[M 99] G. Morrisett et al. TALx86: A Realistic Typed Assembly Language. Submitted for
publication, 1999.

[MBMS95] J. C. Mogul, J. F. Barlett, R. N. Mayo, and A. Srivastava. Performance Implications
of Multiple Pointer Sizes. In USENIX 1995 Tech. Conf. on UNIX and Advanced
Computing Systems, pages 187–200, New Orleans, LA, 1995.

[MH92] D. Muntz and P. Honeyman. Multi-level Caching in Distributed File Systems or
Your Cache ain’t nothin’ but trash. In Winter Usenix Technical Conference, 1992.

[Mil92] D. L. Mills. Network Time Protocol (Version 3) Specification, Implementation and
Analysis. Network Working Report RFC 1305, March 1992.

[MK94] W. J. McIver and R. King. Self Adaptive, On-Line Reclustering of Complex Object
Data. In Proc. of ACM SIGMOD International Conference on Management of Data,
pages 407–418, Minneapolis, MN, May 1994.

[ML94] U. Maheshwari and B. Liskov. Fault-Tolerant Distributed Garbage Collection in
a Client-Server Object-Oriented Database. In Third International Conference on
Parallel and Distributed Information Systems, Austin, Sept. 1994.

[ML97a] U. Maheshwari and B. Liskov. Collecting Cyclic Distributed Garbage by Controlled
Migration. Distributed Computing, 10(2):79–86, 1997.

[ML97b] U. Maheshwari and B. Liskov. Partitioned Collection of a Large Object Store. In
Proc. of SIGMOD International Conference on Management of Data, pages 313–323,
Tucson, Arizona, May 1997. ACM Press.

[ML97c] U. Maheswari and B. Liskov. Collecting Cyclic Distributed Garbage using Back
Tracing. In Proc. of the ACM Symposium on Principles of Distributed Computing,
Santa Barbara, California, Aug. 1997.

[Mos90] J. E. B. Moss. Design of the Mneme Persistent Object Store. ACM Transactions on
Office Information Systems, 8(2):103–139, March 1990.

[Mos92] J. E. B. Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle. IEEE
Transactions on Software Engineering, 18(3), August 1992.

[MS95] M. McAuliffe and M. Solomon. A Trace-Based Simulation of Pointer Swizzling
Techniques. In Proc. International Conf. on Data Engineering, Mar. 1995.

[MWCG98] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language. In Proc. 25th ACM Symp. on Principles of Programming Languages
(POPL), San Diego, California, Jan. 1998.

[Ont92] Ontos. Inc. Ontos reference manual, 1992.
[OOW93] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement Al-

gorithm For Database Disk Buffering. In Proc. of ACM SIGMOD International
Conference on Management of Data, Washington, D.C., May 1993.

[OS94] J. O’Toole and L. Shrira. Opportunistic Log: Efficient Reads in a Reliable Storage
Server. In Proc. of First Usenix Symposium on Operating Systems Design and
Implementation, pages 119–128. ACM Press, 1994.

[OS95] J. O’Toole and L. Shrira. Shared Data Management Needs Adaptive Methods. In In
Proc. of IEEE Workshop on Hot Topics in Operating Systems, May 1995.

[Par98] A. Parthasarathi. The NetLog: An Efficient, Highly Available, Stable Storage Ab-
straction. Master’s thesis, Massachusetts Institute of Technology, June 1998.

[RD90] J. Robinson and N. Devarakonda. Data Cache Management Using Frequency-Based
Replacement. In Proceedings of ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 134–142, 1990.

[Sea97] Seagate Technology, Inc. http://www.seagate.com/, 1997.
[SKW92] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An Efficient, Portable Persistent

Store. In 5th Int’l Workshop on Persistent Object Systems, San Miniato, Italy, Sept.
1992.

[TG90] K. T. and K. G. LOOM—Large Object-Oriented Memory for Smalltalk-80 Systems,
pages 298–307. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[TN91] M. Tsangaris and J. Naughton. A stochastic approach for clustering in object bases.
In Proc. ACM SIGMOD International Conference on Management of Data, pages
12–21, Denver, CO, 1991. ACM.

[WD92] S. J. White and D. J. Dewitt. A performance study of alternative object faulting
and pointer swizzling strategies. In Proceedings of the Eighteenth International
Conference on Very Large Data Bases, pages 419–431, Vancouver, BC, Canada,
1992.

[WD94] S. J. White and D. J. Dewitt. Quickstore: A high performance mapped object store.
In SIGMOD ’94, pages 187–198, 1994.

[WD95] S. J. White and D. J. Dewitt. Implementing crash recovery in QuickStore: A perfor-
mance study. In SIGMOD ’95, pages 187–198. ACM Press, 1995.

[ZCF97] M. Zaharioudakis, M. J. Carey, and M. J. Franklin. Adaptive, Fine-Grained Sharing
in a Client-Server OODBMS: A Callback-Based Approach. ACM Transactions on
Database Systems, 22(4):570–627, Dec. 1997.

This article was processed using the LATEX macro package with LLNCS style

