
Low-Overhead Distributed
Transaction Coordination

by

James Cowling

S.M., Massachusetts Institute of Technology (2007)
B.C.S.T. (Adv.) H1M, The University of Sydney (2004)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2012

Certified by .
Barbara H. Liskov
Institute Professor
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

Low-Overhead Distributed Transaction Coordination

by

James Cowling

Submitted to the Department of
Electrical Engineering and Computer Science
on May 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

abstract

This thesis presents Granola, a transaction coordination infrastructure for
building reliable distributed storage applications. Granola provides a strong
consistency model, while significantly reducing transaction coordination
overhead. Granola supports general atomic operations, enabling it to be
used as a platform on which to build various storage systems, e.g., databases
or object stores.

We introduce specific support for independent transactions, a new type
of distributed transaction, that we can serialize with no locking overhead
and no aborts due to write conflicts. Granola uses a novel timestamp-based
coordination mechanism to serialize distributed transactions, offering lower
latency and higher throughput than previous systems that offer strong
consistency.

Our experiments show that Granola has low overhead, is scalable and
has high throughput. We used Granola to deploy an existing single-node
database application, creating a distributed database application with min-
imal code modifications. We run the TPC-C benchmark on this platform,
and achieve 3× the throughput of existing lock-based approaches.

Thesis Supervisor: Barbara H. Liskov
Title: Institute Professor

3

acknowledgments

I’d like to thank Evan Jones for the many engaging technical discussions,
and for providing the sourcecode that was used as the basis of our TPC-C
implementation. I’d like to also thank the original H-Store authors, including
Dan Abadi, for their contributions to this codebase.

I’d like to thank my thesis committee members, Sam Madden and
Robert Morris, for their feedback on my work. I’d also like to thank the
many anonymous reviewers along the way, who invested their time in
giving constructive feedback on my thesis work, and also on my other
projects throughout grad school.

I’ve greatly enjoyed working with a number of co-authors on various
research projects, and have benefited significantly from their technical
perspective. I’d also like to thank the members of the Programming Method-
ology Group at MIT, for technical discussions, feedback on my work, and
their presence in the lab.

I’ve been fortunate to make many really wonderful friends while at MIT
and I feel that the people I’ve met here have been at least as important as
the work that I’ve done. I’d like to thank them for enriching my life, and
am looking forward to many good times together after grad school.

I’d like to thank my fellow members of the EECS REFS program, and
the many members of the MIT, EECS and CSAIL administrations that have
taken an active interest in student support. I owe a special thanks to Dan
Ports, for providing a great deal of support on both a technical and personal
level. Dan always knew the right time to share his enthusiasm for my work,
or to convince me that whatever “fundamental problem” I was struggling
with wasn’t so fundamental after all. It was extremely valuable to have
someone there to offer continual encouragement.

My family have been tremendously supportive throughout my time at
MIT, and I owe them a great deal of thanks. It hasn’t always been easy living
on the other side of the world, but they’ve always endeavored to bridge the
gap between these two continents. I’d also like to thank my friends back in
Australia, who’ve made a continual effort to keep in touch and remain an

5

active part of my life. I’d especially like to thank those who have flown all
the way to America on a number of occasions.

I’d like to give a special thanks to Kim for the huge amount of support
she’s given me, and for being a tremendous positive influence in my life.
I’d especially like to thank her for putting up with me being in the lab
almost constantly. Having her spend time in the office with me, and be
there during my downtime, has been invaluable.

I’d finally like to thank my advisor, Barbara Liskov, for her support,
technical discussions, feedback, editing and hard work throughout my time
at MIT. Barbara has helped shape the way I think about problems, and
I’d like to thank her for instilling in her students a principled approach to
systems design and research in general.

6

C O N T E N T S

1 Introduction 15
1.1 Granola . 17

1.2 Contributions . 20

1.3 Outline . 20

2 Transaction Model 23
2.1 One-Round Transactions . 23

2.2 Independent Transactions . 25

2.2.1 Applicability of Independent Model 26

2.2.2 Motivation for Avoiding Locking 29

3 Architecture and Assumptions 33
3.1 Architecture . 33

3.2 System Interfaces . 35

3.2.1 Client API . 35

3.2.2 Server API . 37

3.3 Assumptions . 39

4 Granola Protocol 41
4.1 Timestamp Overview . 42

4.2 Client Protocol . 43

4.2.1 Client State . 43

4.2.2 Transaction Invocation 43

4.3 Repository Protocol . 47

4.3.1 Concurrency Control Modes 47

7

4.3.2 Repository State . 48

4.3.3 Single-Repository Transactions 48

4.3.4 Independent Transactions 50

4.3.5 Locking Mode . 53

4.3.6 Transitioning Between Modes 58

4.4 Consistency . 60

4.4.1 Locking Support . 60

4.4.2 Serializability . 60

4.4.3 External Consistency . 64

4.5 Concurrency . 66

4.5.1 Clients . 66

4.5.2 Repositories . 67

5 Failures and Recovery 69

5.1 Replication . 69

5.2 Individual Failures . 71

5.2.1 Repository Recovery . 71

5.2.2 Client Recovery . 76

5.3 Correlated Failure . 78

5.3.1 Recovery from Timestamp Mode 79

5.4 Retries and Duplicate Detection 87

6 Evaluation 89

6.1 Implementation . 89

6.1.1 Workloads . 90

6.1.2 Sinfonia . 90

6.1.3 Experimental Setup . 92

6.2 Base Performance . 93

6.2.1 Single-Repository Transactions 93

6.2.2 Distributed Transactions 94

6.3 Scalability . 96

6.4 Distributed Transaction Tolerance 99

6.5 Locking . 100

8

6.5.1 Lock Management . 101

6.5.2 Lock Contention . 102

6.6 Transitioning Between Modes 104

6.6.1 Transitioning to Locking Mode 104

6.6.2 Transitioning to Timestamp Mode 108

6.7 Transaction Processing Benchmark 111

6.7.1 Scalability . 112

6.7.2 Distributed Transaction Tolerance 113

6.7.3 Latency Trade-off . 116

7 Extensions and Optimizations 119
7.1 Naming and Reconfiguration 119

7.1.1 Overview . 120

7.1.2 Naming . 121

7.1.3 Name Service . 121

7.1.4 Reconfiguration . 122

7.2 Non-Primary Reads . 123

7.3 Caches . 125

7.4 Implicit Votes . 126

7.5 Interactive Transactions . 128

8 Related Work 131
8.1 Consistency Models . 131

8.1.1 Relaxed Consistency . 132

8.1.2 Per-Row Consistency . 132

8.1.3 Strong Consistency . 133

8.2 Deterministic Transaction Ordering 135

9 Conclusions and Future Work 139
9.1 Future Work . 139

9.1.1 Protocol Improvements 139

9.1.2 Transaction Models . 141

9.1.3 Dynamic Reconfiguration 143

9.2 Summary of Contributions . 144

9

A Messages 147
A.1 Message Formats . 147

A.1.1 Request . 147

A.1.2 Vote . 148

A.1.3 Reply . 148

A.2 Protocol Buffers Definitions . 149

B Releasing Locks for Independent Transactions 153

C Master Nodes 159
C.1 Protocol Overview . 160

C.2 Downsides of Masters . 161

C.3 Performance Benefits . 162

10

L I S T O F F I G U R E S

2.1 Traditional two-phase commit protocol 30

2.2 CPU cycle breakdown on the Shore DBMS 31

3.1 Granola system topology . 34

3.2 Logical structure of Granola client and server modules 34

3.3 Client API . 36

3.4 Server Interface . 38

4.1 Independent Transaction Client API 44

4.2 Coordinated Transaction Client API 44

4.4 Independent Transaction Server Interface 49

4.5 Protocol timeline for single-repository transactions 49

4.6 Protocol timeline for independent transactions 51

4.7 Coordinated Transaction Server Interface 54

4.8 Protocol timeline for coordinated transactions. 55

4.9 Example of a serializable execution 62

5.1 Viewstamped Replication protocol 71

5.2 Log recorded at each non-primary replica 73

5.3 Queue of logged transactions at a stalled repository 80

5.4 Simple funds-transfer operation 83

5.5 Recovery Interface . 85

6.1 Protocol timeline for distributed transactions in Sinfonia . . . 91

6.2 Single-repository throughput with increasing client load . . . 94

6.3 Per-transaction latency for single-repository transactions . . . 95

11

6.4 Distributed transaction throughput with increasing client load 95

6.5 Per-transaction latency for distributed transactions 96

6.6 Throughput scalability . 97

6.7 Normalized throughput scalability 98

6.8 Throughput for a given fraction of distributed transactions . . 99

6.9 Throughput impact as a function of lock management cost . . 101

6.10 Throughput impact as a function of lock conflict rate 103

6.11 Locking-mode transition delay as a function of lock conflict rate106

6.12 Locking-mode transition delay as a function of network delay 107

6.13 Expected time spent in locking mode 109

6.14 Fraction of transactions processed in locking mode 110

6.15 TPC-C throughput scalability 113

6.16 Per-transaction latency for distributed transactions in TPC-C 114

6.17 TPC-C throughput as a function of the percentage of dis-
tributed transactions . 115

6.18 TPC-C congestion collapse . 117

7.1 Object identifier format for a database application 121

A.1 Basic message definitions in Protocol Buffers format 150

B.1 Number of transactions processed in locking mode 155

B.2 Throughput as a function of the fraction of independent
transactions . 156

C.1 Granola system topology with master nodes 160

C.2 Topology used in bifurcation experiments 163

C.3 Impact on throughput by avoiding timestamp blocking in a
master-based protocol . 164

C.4 Impact on throughput by avoiding transaction aborts in a
master-based protocol . 165

12

L I S T O F TA B L E S

1.1 Properties of each transaction class 19

4.3 Summary of concurrency control modes 47

7.2 Proposed timestamps for series of independent transactions . 127

13

1I N T R O D U C T I O N

Distributed storage systems spread data and computation across multiple
servers, and provide these resources to client applications. These systems
typically partition their state among many nodes to provide fast access to
data and to provide sufficient storage space for large numbers of clients.

There is a long history of research in distributed storage, but the past five
years has been marked by explosive growth in the popularity of large-scale
distributed storage systems [2–5, 7, 10, 12, 19, 20, 23, 26, 41, 49]. This has
been motivated by the growing demands of cloud computing and modern
large-scale web services.

Cloud computing platforms are typically designed to support large
numbers of clients with diverse application requirements. Ideally these
systems would satisfy the following base requirements:

Large Scale: An immense amount of information is being stored online,
and demand for online storage systems is growing. Supporting these
levels of storage requires a distributed architecture, which must be
able to scale across large numbers of clients and a large number of
storage nodes.

Fault Tolerance: Information entrusted to the system should not be lost,
and should be accessible when needed. These reliability guarantees
must be provided with very high probability.

15

CHAPTER 1. INTRODUCTION

High Performance: Reads and writes should execute with low latency and
per-server throughput should be high.

Consistency: Clients should be provided the abstraction of one-copy serial-
izability [14] so that client applications are not complicated by ill-
defined consistency semantics. Operations on the storage state should
execute atomically, and reads should always be guaranteed to observe
a state at least as recent as the previous operation from the client.

The consistency requirement is of particular interest, since it is the re-
quirement most often neglected in modern distributed storage systems. It is
highly desirable to run operations as atomic transactions, since this greatly
simplifies the reasoning that application developers must do. Transactions
allow users to ignore concurrency, since all operations appear to run se-
quentially in some serial order. Users also do not need to worry that failures
will leave operations incomplete.

Strong consistency is often considered prohibitively expensive, however,
particularly for operations that involve data on multiple servers. Serializable
distributed transactions are traditionally provided through the use of two-
phase commit [28, 36] and strong two-phase locking [25]. This approach has
several downsides, however. Latency is increased due to multiple message
delays in the protocol, along with multiple forced-stable log writes required
to allow recoverability from failures. Throughput can also suffer due to
the overhead of locking, which can be computationally expensive and limit
concurrency; we discuss the costs of locking in more detail in Section 2.2.

Most distributed storage systems do not provide serializable transactions,
because of concerns about performance and partition tolerance. Instead,
they provide weaker semantics, e.g., eventual consistency [23] or causal-
ity [41]. These weaker consistency models pose a challenge to application
development, and limit the types of applications that can be built using the
storage system.

16

1.1. GRANOLA

1.1 granola

This thesis presents Granola,1 an infrastructure for building distributed
storage applications where data resides at multiple storage nodes. Granola
provides strong consistency for distributed transactions, without the over-
head of lock-based concurrency control. Granola provides scalability, fault
tolerance and high performance, without sacrificing consistency.

Granola is a transaction coordination mechanism: it provides transaction
ordering, atomicity and reliability on behalf of storage applications that run
on the platform. Applications specify their own operations, and Granola
does not interpret transaction contents. Granola can thus be used to support
a wide variety of storage applications, such as file systems, databases, and
object stores.

Granola implements atomic one-round transactions. These execute in
one round of communication between a user and the storage system, and
are used extensively in online transaction processing workloads to avoid
the cost of user stalls [10, 32, 50]; we discuss one-round transactions in
more detail in Section 2.1. Granola supports three different classes of one-
round transactions: single-repository transactions, coordinated distributed
transactions, and independent distributed transactions.

Single-Repository Transactions: These transactions execute to completion
at a single storage node, and do not involve distributed transaction
coordination. We expect the majority of transactions to be in this class,
since data is likely to be well-partitioned.

Coordinated Transactions: These transactions execute atomically across
multiple storage nodes, but require transaction participants to vote on
whether to commit or abort the transaction, and will commit only if
all participants vote to commit. These transactions are equivalent to
what is provided by traditional two-phase commit.

1Granola derives its name from its role in guaranteeing a consistent serial (cereal) order
for distributed transactions. The author apologizes for the bad pun.

17

CHAPTER 1. INTRODUCTION

Independent Transactions: This is a new class of transaction that we intro-
duce in Granola to support lock-free distributed transactions. Indep-
endent transactions commit atomically across a set of transaction
participants, but do not require agreement, since each participant will
independently come to the same commit decision. Examples include
an operation to give everyone a 10% raise, an atomic update of a repli-
cated table, or a read-only query that obtains a snapshot of distributed
tables.

There is evidence that a large number of typical workloads are comprised
primarily of independent transactions [50, 53], such as the industry-standard
TPC-C benchmark [8]. We discuss the use of independent transactions in
Section 2.2.

One of Granola’s key contributions is its use of a timestamp-based coor-
dination mechanism to provide serializability for independent transactions
without locking. Granola is able to achieve this by assigning each trans-
action a timestamp, and executing transactions in timestamp order. Each
distributed transaction is assigned the same timestamp at all transaction
participants, ensuring consistency between storage nodes. Granola adopts
a distributed timestamp voting protocol to determine the timestamp for
a given transaction, and utilizes clients to propagate timestamp ordering
constraints between storage nodes.

Granola’s timestamp-based coordination mechanism provides a substan-
tial reduction in overhead from locking, log management and aborts, along
with a corresponding increase in throughput. Granola provides this lock-
free coordination protocol while handling single-repository transactions
and independent transactions, and adopts a lock-based protocol when also
handling coordinated transactions. Granola’s throughput is similar to exist-
ing state-of-the-art approaches when operating under the locking protocol,
but significantly higher when it is not.

Granola also uses transaction coordination protocols that provide lower
latency than previous work that uses dedicated transaction coordinators,
for all transaction classes. Unlike systems that use a single centralized

18

1.1. GRANOLA

Transaction Class Message
Delays

Forced
Log Writes Locking

Single-Repository 2 1 False
Independent 3 1 False
Coordinated 3 1 True

Table 1.1: Properties of each transaction class. The number message de-
lays includes communication with the client, but does not include delays
required for using replication to provide forced log writes.

coordinator [31, 53], or a dedicated set of coordinator nodes [10, 54], Granola
uses a fully-distributed transaction coordination protocol, with no need
for centralized coordination. Granola’s use of a decentralized coordination
protocol reduces latency for distributed transactions, which no longer incur
a round-trip to the coordinator.

Granola runs single-repository transactions with two one-way message
delays plus a stable log write, and both types of distributed transactions
usually run with only three one-way message delays plus a stable log
write. This is a significant improvement on traditional two-phase commit
mechanisms, which require at least two stable log writes, and improves
even on modern systems such as Sinfonia [10], which requires at least four
one-way message delays (for a remote client) and one stable log write.
The performance characteristics of Granola’s three transaction classes are
summarized in Table 1.1.

Since Granola provides strong consistency, there may be cases where
servers have to stall due to the failure of a transaction participant [16]; this
is an unavoidable reality in distributed systems design [27]. Granola uses
replication to minimize the likelihood that a participant will be unavailable.
In the case of a correlated failure that leads to unavailability of an entire
replicated node, Granola provides recovery techniques to enable progress
for transactions that do not depend on the failed participant.

19

CHAPTER 1. INTRODUCTION

1.2 contributions

The main contributions of this thesis are as follows:

• Identifying an independent transaction model for distributed trans-
actions that can be executed atomically without communicating com-
mit or abort decisions between nodes. These transactions are appli-
cable to a variety of workloads and allow a significant reduction in
transaction coordination overhead.

• Developing a transaction coordination platform that handles the de-
tails of reliability and consistency on behalf of distributed storage
applications built on the platform. This platform provides support
for atomic one-round transactions and supports general operations
without interpreting the contents of individual transactions.

• Designing and implementing a timestamp voting and propagation
protocol to serialize independent transactions without locking and
with no centralized transaction coordinator. This system is able to
provide lower latency, higher throughput and lower overhead than
existing lock-based approaches.

We implemented and tested Granola on a set of synthetic benchmarks,
as well as the common TPC-C transaction processing benchmark [8]. These
experiments exhibit a significant benefit from running with independent
transactions, and lead to a 3× increase in throughput on TPC-C, as com-
pared with existing lock-based approaches.

1.3 outline

This thesis discusses the design and implementation of the Granola platform,
including the core protocol for distributed transaction coordination, along
with the infrastructure for building distributed storage applications.

Chapter 2 describes our one-round transaction model in more detail,
and provides additional motivation for the use of independent distributed

20

1.3. OUTLINE

transactions. Chapter 3 then describes Granola’s architecture, application
interface, and assumptions.

We describe the core Granola protocol in Chapter 4 and discuss its
consistency properties. Chapter 5 then discusses the protocols for handling
failures, including network partitions and long-term failure of transaction
participants.

We present an experimental evaluation of Granola’s performance in
Chapter 6 on a set of microbenchmarks, along with an evaluation of Gra-
nola’s performance on a more real-world workload, using the TPC-C trans-
action processing benchmark. We also present a theoretical analysis of some
key aspects of the protocol.

Chapter 7 presents additional extensions and optimizations to the Gra-
nola protocol, both to assist in building practical applications on the plat-
form and for improving performance.

We present a discussion of related work in Chapter 8, along with an
overview of future work and our conclusions in Chapter 9.

We follow these chapters with a number of appendices: Appendix A
provides a listing of the message formats used in Granola; Appendix B
analyzes different methods for switching between transaction processing
modes; and Appendix C discusses our original protocol for running Granola
with centralized coordinator nodes.

21

2T R A N S A C T I O N M O D E L

This chapter discusses Granola’s transaction model in more detail. We first
describe our one-round transaction model. We follow this with a descrip-
tion of the types of applications for which independent transactions are
applicable and a discussion of the motivation for supporting independent
transactions, in terms of reducing locking overhead.

2.1 one-round transactions

Granola adopts a particular style of transactions, which we call one-round
transactions. These transactions are expressed in a single round of commu-
nication between the client and a set of storage nodes. We refer to these
storage nodes throughout this thesis as storage repositories, and refer to
the set of repositories involved in a given transaction as the transaction
participants. We also use the term transaction throughout this thesis to refer
to the one-round transactions used in Granola.

Each transaction is comprised of an application-specific operation to be
run at the server application at each participant, which we refer to as an
operation or op. The client specifies an operation to run at each participant
as part of the transaction, and Granola ensures that these operations are
executed atomically at all participants. Operations are described in more
detail in Section 3.2.

23

CHAPTER 2. TRANSACTION MODEL

One-round transactions are distinct from more general database trans-
actions in two key ways:

1. One-round transactions do not allow for interaction with the client,
where the client can issue multiple sub-statements before issuing
a transaction commit. Granola instead requires transactions to be
specified by the client application as a single set of operations.

2. One-round transactions execute to completion at each participant,
with no communication with other repositories, apart from a possible
commit/abort vote. Granola does not support remote nested trans-
actions being issued by a transaction participant, or sub-queries being
sent to other nodes.

Despite these restrictions, one-round transactions are still a powerful
primitive. They are used extensively in online transaction processing work-
loads to avoid the cost of user stalls [10, 32, 50], and map closely to the
use of stored procedures in a relational DBMS. One-round transactions in
Granola are similar to minitransactions in Sinfonia [10], but can can be used
to execute general operations at each repository, whereas Sinfonia enforces a
more restrictive read/write interface with pre-defined locksets. One-round
transactions are also similar to one-shot transactions in H-Store [50], although
one-round transactions allow commit decisions to be communicated be-
tween participants.

Granola uses one-round transactions as its basic transaction primitive,
and we expect that applications that are built on the platform will implement
the majority of their transactions using this one-round model. Granola can
also be used to implement interactive transactions, however, where each
transaction consists of multiple communication phases between the client
and repositories; we discuss how interactive transactions can be supported
in Section 7.5.

24

2.2. INDEPENDENT TRANSACTIONS

2.2 independent transactions

Granola’s protocol design and our support for independent transactions was
motivated by the desire to provide distributed transactions without locking,
while minimizing communication and message delays in the coordination
protocol. Locking is typically used to ensure that once a server sends a “yes”
vote for a transaction, it is guaranteed to be able to commit that transaction
if all other participants vote to commit. Locking thus ensures that no other
transaction can modify state that was used to determine a vote.

A key insight in this thesis is that, for many transactions, locking is not
actually required in determining whether to commit or abort a transaction.
In particular, if all participants are guaranteed to commit the transaction,
then two-phase commit or two-phase locking are not required. We must
instead just ensure that all participants execute their portion of the trans-
action in the same global serial order, guaranteeing serializability without
the cost of locking or the possibility of conflicts.

Granola exploits lock-free transactions through the use of the indep-
endent transaction class. Instead of pre-executing the transaction to de-
termine the commit vote, and then releasing locks at the commit point,
independent transactions are executed atomically in a single shot once
the transaction has committed. This new model of transactions allows us
not only to avoid locking, but also to rethink the transaction coordination
protocol, reducing the number of message delays and forced log writes.

Our approach was influenced by the H-Store project [50], which iden-
tified a large class of operations in real-world applications, deemed as
one-shot and strongly two-phase, that fit our independent transaction model.
However, that work did not provide a functional protocol for coordinating
independent transactions in a distributed setting [31]. To our knowledge,
no previous system provides explicit support for independent transactions.

We first describe the scenarios under which independent transactions
can be used. We follow this with a discussion of our motivations for using
independent transactions and the costs of using a lock-based alternative.

25

CHAPTER 2. TRANSACTION MODEL

2.2.1 applicability of independent model

The independent transaction class can be used for any one-round distributed
transaction where all participants will make the same local decision about
whether to commit or abort. The relevance of this model for typical online
transaction processing workloads is argued in the H-Store project, for trans-
actions that fit within H-Store’s one-shot and strongly two-phase transaction
classes [50]. Recent work on deterministic transaction ordering also argues
for the relevance of transactions that can execute independently at each
storage node [53, 54].

Any read-only one-round distributed transaction can be represented as
an independent transaction, since each repository can independently return
its portion of the transaction result, without affecting the state at other
participants. These can comprise a significant fraction of transactions in typ-
ical read-heavy workloads. Examples of distributed read-only transactions
include a transaction to read the total balance for a set of bank accounts
distributed across multiple repositories, or any distributed snapshot read in
general.

Any read-write one-round distributed transaction can also be expressed
as an independent transaction if the commit decision is a deterministic
function of state available at all participants. We discuss this case in more
detail as follows.

In systems composed of multiple storage nodes, data is typically spread
across nodes in two ways:

Replicated Data: Individual data items are stored on multiple servers, to
provide higher transaction throughput for multiple simultaneous
clients, or to allow local access to the data at multiple repositories, or
to locate data geographically close to clients.1

Partitioned Data: Data is split among multiple servers to provide increased
storage capacity and greater aggregate transaction throughput.

1Data is also typically replicated for the purposes of reliability; Granola internally
replicates system state to provide durability and availability.

26

2.2. INDEPENDENT TRANSACTIONS

Updates to replicated data must be executed atomically, and can be
performed using an independent transaction at all partitions that store a
copy of the data. Application developers also commonly replicate tables
when partitioning data, to ensure that the majority of transactions are issued
to a single partition [32, 50]. Any transaction where the commit decision
depends only on replicated data can be represented as an independent
transaction, since each participant will have the same replicated data avail-
able to it, and hence will come to the same commit decision. One example
of a transaction predicated on replicated data is a delivery order that will
only commit if the client provides a valid zip code, where each participant
has a local copy of the zip code table.

Transactions that modify partitioned data, but always commit, can be
implemented using independent transactions. Many typical distributed
transactions fit within this model, such as a transaction to atomically up-
date a set of employee records to change their assigned supervisor, or to
atomically give each employee a 10% raise. A transaction that records the
winner of an online auction can be issued as an independent transaction
that atomically updates the auction page on one partition and the user’s
bid history on another partition.

Transactions that update partitioned data do not all fall within the indep-
endent transaction class. In particular, a distributed transaction where the
commit decision depends on data that is available only to a single repos-
itory may need to be implemented with a coordinated transaction, using
lock-based concurrency control. However, a careful partitioning of applica-
tion state can be used to convert many such transactions into independent
transactions.

Escrow transactions [44] can be used to express many coordinated trans-
actions as a single-repository transaction that first puts a quantity into
escrow, followed by an independent transaction used to complete the trans-
action. One example of an escrow transaction is a bank transfer that first
authorizes and reserves sufficient funds for the transfer in an escrow ac-
count, followed by an independent transaction which transfers the funds
from the escrow account to the destination.

27

CHAPTER 2. TRANSACTION MODEL

Demarcation [13] can be used to express some other coordinated trans-
actions as single-repository transactions. Demarcation allows an invariant
to be maintained across multiple partitions by setting demarcation limits at
each partition, and only allowing a single-repository transaction to proceed
if it does not violate these limits. One example is a hospital that is split
across two branches on two repositories, and needs to have a minimum of
10 doctors in total on-call at all times. A demarcation limit of 5 doctors can
initially be set at each branch. A doctor may be taken off-call at one branch
without checking with the other branch, provided the number of doctors
at the branch does not fall below this demarcation limit. If there are only
5 doctors left on call, a doctor cannot be taken off-call until a coordinated
transaction is run to update the demarcation limits to 4 doctors at one
branch and 6 at the other.

We discuss escrow transactions and demarcation in Section 9.1.2.

Case Study: TPC-C

The industry-standard TPC-C benchmark [8], which is designed to be
representative of typical online transaction processing applications and
represents a rather sophisticated database workload, can be implemented
entirely using independent transactions. The H-Store position paper [50]
describes a partitioning strategy used to express each TPC-C transaction as
a one-round transaction.

There are five different transactions in the TPC-C benchmark, but only
two of these are distributed transactions, given the H-Store partitioning: the
payment transaction and the new_order transaction.

The payment transaction updates a customer’s balance and the ware-
house/district sales fields. Since this transaction never needs to abort, it
can be implemented as an independent transaction where each repository
updates the customer balance and sales fields independently.

The new_order transaction may need to abort if the transaction request
contains an invalid item number. The Item table is read-only in the TPC-C
workload, and can be replicated at each repository. Since each repository has

28

2.2. INDEPENDENT TRANSACTIONS

local access to the Item table, each participant can independently determine
whether to commit or abort a new_order transaction, and can thus execute
it as an independent transaction.

If we extended the TPC-C benchmark such that the Item table was not
read-only and occasionally needed to be updated, these updates could also
be implemented using independent transactions.

2.2.2 motivation for avoiding locking

Providing strong consistency for atomic transactions is a significant chal-
lenge in most distributed systems. Strong consistency, namely serializability,
requires that the execution order of transactions at each server matches a
single global serial order. This global order allows client applications to
interact with the distributed system using the familiar abstraction of a single
correct server, rather than a large collection of disparate nodes.

The challenge for providing serializability lies in respecting ordering
dependencies between individual servers. For example, if a client executes
an atomic transaction T1 at servers S1 and S2, the system must guarantee
that no client is able to observe T1’s effects at S1 then execute a transaction at
S2 that modifies data used by T1, before S2 has executed T1. An anomalous
sequence of operations like this could violate the global serial ordering, and
hence violate the abstraction of a single correct server.

Lock-based Concurrency Control

Serializable atomic distributed transactions are traditionally provided by
the use of two-phase commit [28, 36], in conjunction with strict two-phase
locking [25]. We illustrate this process in Figure 2.1, for a one-round trans-
action model. When a server receives a transaction it acquires any locks
that may be required by the transaction, and records this information using
a stable log write so that it will not be lost in case of a failure. The server
then decides whether to commit or abort the transaction, and sends its
vote to a coordinator. The coordinator collects votes from each participant,
records this information using a stable log write, then sends out a commit

29

CHAPTER 2. TRANSACTION MODEL

Prepare

time

Reply

Yes Vote + Result

Request

Client Server Server

release locks release locks

forced log write forced log write

acquire locks acquire locks

Coordinator

Commit

forced log write forced log write

ACK

locks
heldforced log write

lazy log write

Figure 2.1: Traditional two-phase commit protocol, as applied to a one-
round transaction model. Locks must be acquired for the duration of the
transaction, and multiple forced log writes must be written on both the
participants and the coordinator.

decision. Each server is only able to commit the transaction and release its
locks once it receives this final commit decision. Of particular note here is
the extended duration that locks must be held, which is exacerbated by the
multiple forced log writes in the protocol.

Locking Costs

The use of two-phase commit with strict two-phase locking provides serial-
izability [25], but has two significant downsides related to the cost of locking.
The first downside is that locking is computationally expensive. Each lock-
ing step requires computing the lockset for the transaction, acquiring these
locks, and recording an undo log in stable storage in case an abort decision
is received. This locking overhead can comprise a significant fraction of
CPU time, particularly for transactions that involve relatively low execution

30

2.2. INDEPENDENT TRANSACTIONS

!"#$%&

"'#(%&

!)#"%&

!*#+%&

"!#)%&

*#!%& !"#$%%&'%()

*+,,-.,

*+/0-.,

*12/3-.,

!45%$&6++7

8997-/1:+.

;+./4$$%./(

/+.2$+7

<&=>"?>@

Figure 4-1: CPU cycle breakdown while executing TPC-C New Order transactions on
Shore [46]

In this chapter, we propose a new form of concurrency control, called Speculative Con-
currency Control, which is designed for these “imperfectly partitionable” applications.
These workloads are composed mostly of single-partition transactions, but also include
some multi-partition transactions that impose network stalls. The goal is to allow a pro-
cessor to do something useful during a network stall, while not significantly hurting the
performance of single-partition transactions.

Most applications we have examined are imperfectly partitionable. For example, the
TPC-C transaction processing benchmark, even when carefully partitioned, is composed
of 89% single-partition transactions. The remaining 11% touch multiple partitions. Other
applications follow similar patterns. They can be carefully partitioned so the common op-
erations access a single partition, but other less common operations still need to access
multiple partitions. Many-to-many relationships cause this kind of partitioning. The re-
lationship can be partitioned so that accessing the relationship in one direction accesses a
single partition. For example, consider users who can belong to multiple groups. If the data
is partitioned by group, then accessing a group and all of its users accesses a single parti-
tion. However, when this is done, accessing the relationship in the other direction will need
to access all partitions. In the users and groups example, if we wish to access all the groups
that a specific user belongs to, we will need to query all partitions. Thus, many-to-many
relationships that are partitioned so the common operations are single-partition accesses
tend to require a small fraction of the workload to access multiple partitions.

In the remainder of this chapter, we describe how Dtxn performs concurrency control
for a naive blocking scheme, speculative concurrency control, and a traditional two-phase
locking approach. Since Dtxn separates concurrency control from the storage engine, we
present experiments comparing the performance of these schemes.

40

Figure 2.2: CPU cycle breakdown while executing TPC-C new_order trans-
actions [8] on the Shore DBMS [6]. This figure appeared in Fault-Tolerant
Distributed Transactions for Partitioned OLTP Databases [31] and is based on
an earlier study [30].

cost, as is common in typical online transaction processing workloads [50].
Figure 2.2 shows the breakdown in execution time for transactions in the
Shore database management system (DBMS) [6]. This figure shows a sig-
nificant fraction of time devoted solely to locking, latching and logging.
Studies of typical transaction processing workloads have estimated locking
overhead to be 30–40% of total CPU load [30, 31], in addition to the logging
required for durability.

The second downside is that locking can lead to lock conflicts, which limit
concurrency and result in transactions being blocked or aborted. Locks must
be held for the duration of a transaction, which can be a significant period
of time for distributed transactions; as seen in Figure 2.1, the lock duration
includes the time taken to execute the forced stable log writes, as well as
the time taken to communicate with the coordinator. If a workload involves
frequent access to commonly-used data, lock conflicts can significantly
reduce system throughput.

31

CHAPTER 2. TRANSACTION MODEL

These two downsides typically also apply to transactions that execute
solely on a single server, since locking is required for all transactions if there
are any concurrent distributed transactions.

32

3
A R C H I T E C T U R E A N D A S S U M P T I O N S

This chapter describes Granola’s architecture and system model, and defines
the terminology used throughout this thesis. We also describe the Granola
application interface and discuss the assumptions made in our design.

3.1 architecture

Granola contains two types of nodes: clients and repositories. Repositories are
the server machines that store data and execute transactions, while clients
interact with the repositories to issue transaction requests. Repositories
communicate among themselves to coordinate transactions, whereas clients
typically interact only with the repositories. This topology is illustrated in
Figure 3.1.

Granola is a general platform for transaction coordination, and may be
used to support a large variety of client and server applications. Appli-
cations link against the Granola library, which provides functionality for
correctly ordering transactions and delivering them reliably to each server
application.

Applications are layered atop the Granola client and repository code, as
shown in Figure 3.2. The client application provides the desired application-
specific interface to user code and interacts with the Granola client proxy

33

CHAPTER 3. ARCHITECTURE AND ASSUMPTIONS

Clients

Repositories

Replicas

Figure 3.1: Granola system topology. This figure shows the clients and
repositories, as well as the individual replicas that make up each repository.

ClientProxy

User Code

Repository

Server Application
(extends GranolaApplication)

Client Application

Figure 3.2: Logical structure of Granola client and server modules.

to issue requests. The client application is responsible for interpreting
user operations, determining which repositories are involved in a given
transaction, and choosing which transaction class to use.

The server application implements the GranolaApplication interface
in order to execute transactions on behalf of each repository. The server
application runs in isolation at each repository, and does not need to com-
municate with other repositories, since this functionality is provided by the
Granola repository code. The client and server interfaces are described in
more detail in Section 3.2.

Each repository is actually comprised of a number of replica nodes
that are used to provide reliability. Replication is handled internally by
the Granola protocol, on behalf of the application. This allows each server
application to be soft-state, and eliminates the overhead for managing

34

3.2. SYSTEM INTERFACES

durability on the application level. Granola presents the abstraction of
individual reliable repository nodes to the client application, and the client
application does not need to be aware of the replicated repository structure.
We discuss replication in more detail in Section 5.1.

3.2 system interfaces

Granola is designed to support arbitrary storage applications built atop
the platform, and communicates with applications using a well-defined
interface. Granola does not interpret the contents of operations, and treats
them as arbitrary byte strings. We discuss the client and server interfaces
below.

3.2.1 client api

Client applications make function calls to the ClientProxy library to issue
transaction requests. Figure 3.3 shows the interface provided by this library.

The client application must determine which transaction class to use for
the request, and call the corresponding invocation function; the decision of
which transaction class to use for a given transaction is thus the responsibil-
ity of the application developer. The client application is also responsible for
specifying which repositories will receive the transaction. Each repository is
identified by a unique repository identifier, known as an RID. The mapping
from application-level names to RIDs is managed by a name service that
stores this mapping on behalf of clients, as described in Section 7.1.3.

Transaction participants provide a result response if the transaction
commits; the client proxy will write this response into the buffer provided
by the client application. Granola also allows a result response to be returned
for aborted transactions, when using the coordinated transaction interface,
to allow for application specific abort information to be communicated to
the client application, e.g., an abort code or status message. Granola only
returns an aborted result from one repository to the client application, to
avoid waiting to hear from all repositories.

35

CHAPTER 3. ARCHITECTURE AND ASSUMPTIONS

/*
* Independent Interface

*/

// issue trans to given repository with read-only flag
// writes result into provided buffer
void invokeSingle(int rid, ByteBuffer op, boolean ro,

ByteBuffer result);

// issue trans to set of repositories
void invokeIndep(List<Integer> rids, List<ByteBuffer> ops,

boolean ro, List<ByteBuffer> results);

/*
* Coordinated Interface

*/

// issue trans to set of repositories
// returns application commit/abort status.
// only one result returned if abort received,
// the rest are set to length 0
boolean invokeCoord(List<Integer> rids, List<ByteBuffer> ops,

List<ByteBuffer> results);

Figure 3.3: Client API. Clients invoke transactions by calling this API. We
provide additional specialized interfaces for distributed transactions where
all participants receive the same request.

36

3.2. SYSTEM INTERFACES

The client may specify whether a single-repository transaction or an
independent transaction is read-only. Coordinated transactions are never
read-only, since a read-only coordinated transaction can always be imple-
mented using the independent transaction class.

The Granola ClientProxy interface provides blocking function calls for
transaction invocation. The interface can easily be extended, however, to
support non-blocking invocation. Our current implementation supports
multiple concurrent invocation requests from individual client application
threads. The final serial order of concurrent requests is determined by
Granola.

3.2.2 server api

Server applications extend the GranolaApplication interface, to process
operations on behalf of the Granola repository code. This interface is shown
in Figure 3.4.

We refer to function calls to the server application as upcalls, to signify
that the code is being executed within the server application and not the
Granola repository code. The repository adopts a single-threaded execution
model, where one upcall is issued at a time to the server application. This
allows the server application to avoid concurrency control overhead, and
achieve significantly higher transaction throughput [50]. Our execution
model achieves best performance when transaction execution does not
involve significant stalls within the application, as discussed in Section 3.3.

Single-repository transactions and independent transactions are executed
atomically using a single run upcall. The repository uses this upcall to pass
the operation to the server application as a byte buffer, and receives a byte
buffer result.

Upcalls for coordinated transaction follow a two-phase process: first the
repository issues a prepare upcall to prepare the transaction, followed by a
commit or abort upcall once the final commit decision has been determined.
Each transaction is identified by a unique transaction identifier (TID), which
is provided by the client proxy in each request. The prepare upcall is used

37

CHAPTER 3. ARCHITECTURE AND ASSUMPTIONS

/*
* Independent Interface

*/

// executes transaction to completion
// returns false if blocked by coord trans, true otherwise
boolean run(ByteBuffer op, ByteBuffer result);

/*
* Coordinated Interface

*/

// runs to commit point and acquires locks
// returns COMMIT if voting commit, CONFLICT if aborting
// due to a lock conflict, and ABORT if aborting due to
// application logic
// result is non-empty only if returning ABORT
Status prepare(ByteBuffer op, long tid, ByteBuffer result);

// commits trans with given TID, releases locks
void commit(long tid, ByteBuffer result);

// aborts trans with given TID, releases locks
void abort(long tid);

/*
* Recovery Interface

*/

// acquires any locks that could be required if preparing
// the trans at any point in the serial order
// acquires additional handle on locks if there's a conflict
// returns true if no conflict, but acquires locks regardess
boolean forcePrepare(ByteBuffer request, long tid);

Figure 3.4: Server Interface. Applications extend this interface to handle
upcalls from Granola.

38

3.3. ASSUMPTIONS

to determine the vote for the transaction at the repository. Each participant
decides whether to vote commit or abort, as in traditional two-phase commit.
If the application votes to commit the transaction, the repository will issue a
subsequent commit upcall if all other participants vote commit, or an abort

upcall otherwise.
The contract with the server application is that if it votes to commit

a transaction, then it must be able to commit or abort that transaction
when the corresponding upcall is subsequently received, while providing
isolation from any concurrent transactions. Typically this guarantee will
be provided by using strict two-phase locking [25] within the application:
when a prepare upcall is received, the application executes the transaction
to completion, and acquires locks on any pages touched by the transaction.
The application also records an undo record, to roll back execution if the
transaction is aborted.

The application can abort a transaction in one of two different ways. If it
encounters a lock conflict during the prepare phase, it rolls back execution
and returns a CONFLICT response. The client proxy will retry this transaction
after a random backoff period, to wait for any conflicting locks to be released.
If the application decides to abort the transaction due to an application-
specific predicate, however, such as there being insufficient funds in a bank
account, then it rolls back execution and returns an ABORT response. If the
client proxy receives an ABORT response it will return this directly to the
client application, and will not retry the transaction.

The recovery interface is used to make progress when a transaction
participant has failed. This interface is described in more detail in Section 5.3.
The application is not required to maintain any stable state, since this
functionality is provided by replication within the Granola protocol.

3.3 assumptions

Granola assumes a mostly-partitionable in-memory workload, as is com-
mon in most large-scale transaction processing applications [50]. A mostly-
partitionable workload is required to allow the system to scale in the number

39

CHAPTER 3. ARCHITECTURE AND ASSUMPTIONS

of repositories; Granola is designed to provide high performance for dis-
tributed transactions, but no scalability benefit can be realized if every
transaction is executed on a large fraction of the participants.

An in-memory workload is desirable as it avoids costly disk stalls and
reduces the potential execution time for a transaction. We assume that
transactions have relatively short duration, since our execution model is-
sues upcalls one at a time; the assumption of short transaction duration
is also typical in most large-scale online transaction processing workloads.
Our model of serial transactions execution matches the execution model
advocated in the H-Store project, which saves considerable overhead over
the cost of application-level latching and concurrency control for short-lived
transactions [50]. Note while each repository only executes one transaction
at a time, it can coordinate the ordering of many transactions in parallel.
Multiple repositories may be colocated on a single machine to take ad-
vantage of multiple compute cores, and Granola can also be extended to
support multithreaded execution, as outlined in Section 9.1.1.

Granola tolerates crash failures. Our replication protocol depends on
replicas having loosely synchronized clock rates [38]. We depend on reposi-
tories having loosely synchronized clock values for performance, but not for
correctness.

Since we are providing strong consistency, there may be cases where we
have to stall because of failure [16]. Our use of replication minimizes the
likelihood that a repository will be unavailable. In the case of a correlated
failure that leads to unavailability of an entire repository, some transactions
may stall but others will continue to run. Section 5.3 describes the system
behavior during periods of long-term failures or network partitions, and
specifies protocols to allow progress during these periods.

40

4
G R A N O L A P R O T O C O L

This chapter describes the core Granola protocol. We first discuss the time-
stamps used to provide serializability in the absence of locking. We then
discuss the two concurrency control modes that determine whether or not
locking is used, and our protocols for the three transaction classes.

In the following sections we note where a stable log write is required. This
step is analogous to a forced disk write in a traditional database, however
we instead use replication to ensure that the log write is stable. Stable log
writes involve the primary replica executing state machine replication, as
described in Section 5.2.1. Replication is only required where explicitly
denoted in the protocol as a stable log write. Communication between
repositories occurs solely between the primary replicas at each repository;
if a request is received by a non-primary replica, it forwards the request to
the primary.

This chapter assumes there are no failures. We discuss failure and
recovery in Chapter 5 and the protocols for retries and duplicate detection
are discussed in Section 5.4. A full listing of the message formats used in
the Granola protocol is provided in Appendix A.

41

CHAPTER 4. GRANOLA PROTOCOL

4.1 timestamp overview

Granola uses timestamps to define the commit order of transactions. Unlike
systems based on traditional two-phase commit [1, 10, 12, 28, 36, 42], the use
of timestamps allows Granola to order single-repository transactions and
independent distributed transactions with no locking, conflicts or deadlock.
Each transaction is assigned a timestamp that defines its position in the
global serial order. We use a distributed timestamp voting mechanism to
ensure that a distributed transaction is given the same timestamp at all
participants, as described in Section 4.3.4.

A transaction is ordered before any other transaction with a higher time-
stamp. Two transactions may end up being assigned the same timestamp,
since the final timestamps depend on votes from other participants. In this
case the TID is used to break the tie when ordering transactions, i.e., the
transaction with the lowest TID is ordered first. Since timestamps define a
total ordering of transactions, and we execute transactions in this timestamp
order, our protocol guarantees serializability.

Repositories choose timestamps by reading their local system clock.
Transaction participants exchange timestamps before committing a given
transaction, to ensure that they all assign it the same timestamp. Granola
timestamps are similar to Lamport Clocks [34]: Each transaction result
sent to the client contains the timestamp for that transaction, and each
request from the client contains the latest timestamp observed by the client.
Repositories postpone execution of a client request until they are up-to-date
with respect to highest transaction observed by the client, ensuring that
they are in sync.

Wall-clock time values are used as the basis for timestamps to ensure that
repositories choose similar timestamps for a given distributed transaction,
before voting to decide on the final timestamp. This is used purely as a
performance optimization, since the correctness of the protocol is already
guaranteed by clients propagating timestamps in subsequent requests. We
explain the use of timestamps in the following sections.

42

4.2. CLIENT PROTOCOL

4.2 client protocol

This section discusses the protocol used by the Granola client proxy, which
is code provided by the Granola library. The client proxy receives transaction
requests from the client application and issues them to the repositories,
as shown in Figure 3.2. The client proxy exports the interface provided in
Figure 3.3. We will refer to the client proxy in the following discussion as
the “client.”

4.2.1 client state

Each client maintains the following state:

cid: The globally-unique ID assigned to the client.

seqno: The sequence number for the current transaction. Each transaction
has a unique sequence number at a given client.

highTS: The highest timestamp the client has observed in any previous
reply from a repository.

The client identifies each transaction by a globally-unique TID (trans-
action identifier). The TID is generated by concatenating the globally-unique
cid with the seqno for the transaction.

Persistence of this state across failures is discussed in Section 5.2.2.

4.2.2 transaction invocation

The client application issues transaction invocation requests to the client
proxy using the Granola client API, as discussed in Section 3.2.1. The inter-
face for issuing single-repository transactions and independent distributed
transactions is shown in Figure 4.1. The interface for coordinated distributed
transactions is shown in Figure 4.2.

Each invocation upcall to the client proxy specifies the following param-
eters:

43

CHAPTER 4. GRANOLA PROTOCOL

// issue trans to given repository with read-only flag
// writes result into provided buffer
void invokeSingle(int rid, ByteBuffer op, boolean ro,

ByteBuffer result);

// issue trans to set of repositories
void invokeIndep(List<Integer> rids, List<ByteBuffer> ops,

boolean ro, List<ByteBuffer> results);

Figure 4.1: Independent Transaction Client API. Clients invoke single-
repository transactions and independent transactions by calling this API.

// issue trans to set of repositories
// returns application commit/abort status
//
// only one result returned if abort received,
// the rest are set to length 0
boolean invokeCoord(List<Integer> rids, List<ByteBuffer> ops,

List<ByteBuffer> results);

Figure 4.2: Coordinated Transaction Client API. Clients invoke coordinated
transactions by calling this API.

44

4.2. CLIENT PROTOCOL

rids: The repository IDs (RIDs) for the set of repositories involved in the
transaction. Only one ID is provided for single-repository transactions.

ops: The transaction operation to execute at each repository in the rids set,
expressed as an uninterpreted byte string.

ro: A flag specifying whether the request is read-only. This flag is implicitly
set to false for coordinated transactions, since read-only transactions
can always be implemented using independent transactions.

results: A set of buffers that the transaction results will be written into,
one for each repository in rids.

The client first increments its seqno, and then sends a 〈Request, tid,
highTS, rids, ops, ro, indep〉 message to the set of repositories specified
in rids. The indep flag specifies whether the transaction is independent,
which is true for invokeSingle and invokeIndep upcalls and false for
invokeCoord upcalls.

Each repository responds with a 〈Reply, tid, rid, ts, status, result〉
message, including the TID for the transaction, the repository’s RID, the
timestamp (ts) assigned to the transaction, and the result from executing
the op. A status value of COMMIT means that the transaction committed,
which we refer to as a committed response. If status is CONFLICT or ABORT
then the transaction was aborted, and we refer to it as aborted response. We
discuss each case in the following sections.

Committed Response

If a client receives a committed Reply message, it waits to receive a Reply

from all the repositories in rids. These will all be committed responses,
since all repositories make a consistent decision about whether to commit a
given transaction.

Once the client receives all responses, it first sets its highTS value to be
the ts in the Reply messages. It then aggregates the result from each repos-
itory and returns these to the client application in the provided results

buffer.

45

CHAPTER 4. GRANOLA PROTOCOL

If the transaction was invoked using a invokeCoord upcall, the return
value will be set to true, otherwise the return value is void. The client appli-
cation will always observe a single-repository transaction or independent
transaction to commit. If the server application wishes to communicate an
application-level abort for these transactions, it can encapsulate this in the
transaction result.

Aborted Response

If the transaction aborted, the status will be set to either ABORT or CONFLICT.
These responses correspond to the two reasons a transaction may abort:
either the server application ran the op and decided to abort it based on
application logic; or the transaction aborted due to a lock conflict or other
failure. We describe these two cases as follows:

Logical Abort An ABORT status signifies that at least one of the participants
voted abort for the transaction, based on application-level predicates. This
is considered the end of the transaction, and the client updates highTS as
discussed for committed responses.

Logical aborts are returned only for coordinated transactions, since these
are the only transactions that allow voting on the commit decision. The
client writes the result from the first abort response to the buffer provided
by the client application, and returns false in response to the invokeCoord

upcall. The result response is included to allow the server application
to communicate any additional information about the abort to the client
application.

Conflict Abort A CONFLICT status signifies that there was a lock conflict or
failure when attempting to execute the transaction, and that the transaction
should be retried. Unlike logical aborts, the client does not update highTS,
since the transaction has not yet completed. The client instead increments
its seqno before retrying, to signify that it is a new transaction attempt. The
client first waits a random binary exponential backoff period, then reissues
the transaction with the new TID.

46

4.3. REPOSITORY PROTOCOL

Mode Supported Transactions

Timestamp Single-Repository, Independent
Locking Single-Repository, Independent, Coordinated

Table 4.3: Summary of concurrency control modes. A repository is in only
one mode at a time.

The circumstances whereby transactions may abort are discussed in the
following sections.

4.3 repository protocol

This section describes the protocols for processing transactions at each
repository. We first describe Granola’s two concurrency control modes,
which dictate which protocol is used for transaction coordination.

4.3.1 concurrency control modes

Each repository in Granola operates in one of two distinct concurrency con-
trol modes. When the repository is currently handling only single-repository
transactions or independent transactions, it operates in timestamp mode. This
is the primary concurrency control mode in Granola, and the mode dur-
ing which no locking is required. If a repository is currently handling a
coordinated transaction, it dynamically switches to locking mode. Locking is
required for all transactions at the repository when it is in locking mode;
this avoids conflicts with active coordinated transactions. These modes are
summarized in Table 4.3.

Each repository is in only one mode at a time. The decision to be in a
particular mode is made locally at a given repository, and is not a global
property. A repository in timestamp mode can safely be a participant in
an independent transaction with other participants that are in timestamp
mode. The application must keep track of whether it is in timestamp mode
or locking mode, based on whether there are any currently-outstanding

47

CHAPTER 4. GRANOLA PROTOCOL

transactions that were issued a prepare upcall but not yet been issued a
commit or abort.

Serializability is provided using timestamps when in timestamp mode,
whereas locking is used in locking mode to provide compatibility with
coordinated transactions. Sections 4.3.3 and 4.3.4 describe the protocols for
single-repository and distributed transactions as they work in timestamp
mode. Section 4.3.5 describes how the system runs in locking mode and
how it transitions between modes.

4.3.2 repository state

Each repository maintains the following state:

rid: The globally-unique ID assigned to the repository.

mode: The concurrency control mode the repository is currently in, either
TIMESTAMP or LOCKING.

lastExecTS: The timestamp of the most recently executed transaction at
the repository.

In addition to the state listed above, the repository must also maintain
various internal buffers to keep track of individual transaction state. The
management of this state is described in the following sections.

4.3.3 single-repository transactions

The basic protocol for single-repository transactions is straightforward,
and has much in common with how existing single-node storage systems
work. The key difference in Granola is the use of timestamps to ensure
serializability in the presence of independent transactions.

The server application at each repository executes transactions in re-
sponse to run upcalls from the repository code, as described in Section 3.2.2.
The application interface required to support execution of single-repository
transactions is shown in Figure 4.4.

48

4.3. REPOSITORY PROTOCOL

// executes transaction to completion
// returns false if blocked by coord trans, true otherwise
boolean run(ByteBuffer op, ByteBuffer result);

Figure 4.4: Independent Transaction Server Interface. Applications extend
this interface to handle upcalls from Granola for single-repository trans-
actions or independent distributed transactions.

time

Reply

Request

Client Repository

run

log write

Figure 4.5: Protocol timeline for single-repository transactions.

Read-Write Transactions

We first describe the protocol for read-write transactions, which can arbi-
trarily read and modify the service state. The protocol for processing a
〈Request, tid, highTS, rids, ops, ro, indep〉 message, where the size of
rids is 1 and ro is false, is described as follows. The protocol timeline for
single-repository transactions is shown in Figure 4.5.

1. The repository first selects a timestamp ts for the transaction. ts
must be greater than lastExecTS at the repository and the highTS

provided in the Request.

2. The repository performs a stable log write to record both the Request

and ts, so that this information will persist across failures.

3. The transaction is now ready to be executed. Transactions are executed
in timestamp order, and are queued after any transactions with lower
timestamps. The repository first sets its lastExecTS value to ts. The
transaction is then executed by issuing a run(op, result) upcall to

49

CHAPTER 4. GRANOLA PROTOCOL

the server application, where result is an empty byte buffer used to
store the result.

4. Finally a 〈Reply, tid, rid, ts, status, result〉 message is sent to the
client, where status is COMMIT.

Additional transactions can be processed while awaiting completion of
a stable log write; these requests will be executed in timestamp order.

Read-Only Transactions

The protocol for read-only transactions is the same as for read-write trans-
actions, except that a stable log write is not required in Step 2 of the protocol.
Since read-only transactions do not modify the service state, they can be
retried in the case of failure.

We present optimizations to run read-only transactions at non-primary
replicas in Section 7.2.

4.3.4 independent transactions

Independent distributed transactions are ordered with respect to all other
transactions, without any locking or conflicts. This is achieved by execut-
ing each independent transaction at a single timestamp at all transaction
participants.

We determine the timestamp for independent transactions by using a
distributed timestamp voting mechanism. Each participant nominates a
proposed timestamp for the transaction, the participants exchange these
nominations in Vote messages, and the transaction is executed at the
highest timestamp from among these votes. This protocol does not require
a dedicated coordinator, or the involvement of repositories that are not
participants in the transaction.

The application interface required to support execution of independent
transactions is the same as for single-repository transactions, as shown in
Figure 4.4.

50

4.3. REPOSITORY PROTOCOL

Request

Client Repository Repository

Reply

Vote

run run

log write log write

time

Figure 4.6: Protocol timeline for independent transactions.

This section discusses the protocol for handling independent transactions
when in timestamp mode; the locking mode protocol is discussed in the
subsequent section.

Read-Write Transactions

The protocol for processing a read-write 〈Request, tid, highTS, rids, ops,
ro, indep〉 message, where indep is true and ro is false, is described as
follows. The protocol timeline for independent transactions is shown in
Figure 4.6.

1. The repository selects a proposed timestamp (proposedTS) for the
transaction. proposedTS must be greater than the lastExecTS value
at the repository and the highTS value provided in the Request.

2. The repository performs a stable log write to record both the Request

and proposedTS, so that this information will persist across failures.

3. The repository sends a 〈Vote, tid, rid, proposedTS, status, retry〉
message to the other participants, where status is COMMIT and retry

is false. The retry flag is only used during failure recovery, as dis-
cussed in Section 5.4. The repository can process other transactions
after the vote has been sent.

51

CHAPTER 4. GRANOLA PROTOCOL

4. The repository waits for Vote messages from the other participants
listed in rids. If a Vote is received where status is CONFLICT, the
repository ceases processing the transaction and immediately responds
to the client with a 〈Reply, tid, rid, proposedTS, status, result〉
message, where status is CONFLICT and result is empty. CONFLICT
votes can only be received from a participant that is in locking mode.
It is not possible to receive a vote with an ABORT status for an indep-
endent transaction.

5. Once commit Vote messages have been received from all other part-
icipants, the transaction is assigned the highest timestamp (finalTS)
from all proposedTSs in the votes. The same finalTS value will be
chosen at all participants.

6. The transaction is now ready to be executed. Transactions are executed
in timestamp order, and are queued after any transactions with lower
timestamps. When it is time to execute the transaction, the repository
first sets its lastExecTS value to finalTS. The transaction is then ex-
ecuted by issuing a run(op, result) upcall to the server application,
where result is an empty byte buffer used to store the result.

7. Finally a 〈Reply, tid, rid, finalTS, status, result〉 message is sent
to the client, where status is COMMIT.

As mentioned, the repository can process other transactions while wait-
ing for votes. In all cases we guarantee serializability by executing in time-
stamp order. A transaction will not be executed until after any concurrent
transaction with a lower timestamp at the repository. It is thus possible
for the execution of a transaction to be delayed if a transaction with a
lower timestamp has not yet received a full set of votes. The repository can
continue to vote on other transactions and queue up transaction execution
during this period. Longer-term delays can occur if a transaction participant
has failed and the repository does not receive a full set of votes; recovery
from a failed participant is discussed in Section 5.3.

52

4.3. REPOSITORY PROTOCOL

Read-Only Transactions

The protocol for read-only independent transactions is the same as for
read-write independent transactions, except that a stable log write is not
required in Step 2 of the protocol.

If the repository recovers from failure, it is possible that the new primary
will vote again for the read-only independent transaction with a different
timestamp. This can result in the client receiving responses with mismatched
timestamps. The client proxy will discard any such transaction, and retry
it with a new TID. This protocol does not violate serializability, since even
though different repositories may process a read-only transaction at different
timestamps, the client proxy will never return a conflicting response to the
client application; the repository states will not diverge since the transaction
is read-only.

4.3.5 locking mode

We now discuss the protocols used at a repository when in locking mode. We
first describe the protocol for coordinated transactions, and then discuss how
the handling of single-repository transactions and independent transactions
changes when in locking mode.

Coordinated Transactions

Coordinated transactions require participants to agree on whether to commit
or abort a transaction. Each repository first determines whether to vote
commit or abort for the transaction, and the transaction commits only if all
participants send a commit vote.

Locking Coordinated transactions require locking to support concurrency.
Otherwise a transaction might invalidate the state used to determine a
commit vote for another transaction. A simple example is a bank transfer
that can only proceed if an account has sufficient funds: locking is required
to ensure that another transaction does not produce insufficient funds after
the commit vote for the transfer has been sent.

53

CHAPTER 4. GRANOLA PROTOCOL

// runs to commit point and acquires locks
// returns COMMIT if voting commit, CONFLICT if aborting
// due to a lock conflict, and ABORT if aborting due to
// application logic
// result is non-empty only if returning ABORT
Status prepare(ByteBuffer op, long tid, ByteBuffer result);

// commits trans with given TID, releases locks
void commit(long tid, ByteBuffer result);

// aborts trans with given TID, releases locks
void abort(long tid);

Figure 4.7: Coordinated Transaction Server Interface. Applications extend
this interface to handle upcalls from Granola for coordinated distributed
transactions.

Granola presents a layered architecture to applications and does not
directly interpret transaction operations, as described in Section 3.1. Locking
is thus the responsibility of the server application that sits atop the Granola
repository code. The application interface required to support locking and
execution of coordinated transactions is shown in Figure 4.7.

The repository passes an operation to the application using a prepare

upcall, and the application returns its vote for the transaction. If the appli-
cation returns a commit vote, it must guarantee that it is able to commit
or abort the transaction at any point in the future. This can be achieved by
using strict two-phase locking: pre-executing the transaction, locking any
pages touched during execution, and recording an undo log in case the
transaction aborts. The application is free, however, to use any equivalent
concurrency control mechanism.

The final commit or abort decision is communicated to the application
using a commit or abort upcall. Transactions are identified by passing the
TID to the application.

Protocol The protocol for processing a read-write 〈Request, tid, highTS,
rids, ops, ro, indep〉 message, where indep and ro are false is as follows.

54

4.3. REPOSITORY PROTOCOL

time

Reply

Vote

Request

Client Repository Repository

commit commit

log write log write

prepare prepare

Figure 4.8: Protocol timeline for coordinated transactions.

Read-only transactions are not considered, since any read-only distributed
transaction can be implemented as an independent transaction. The protocol
timeline for coordination transactions is shown in Figure 4.8.

1. Coordinated transactions first undergo a prepare phase. The reposi-
tory issues a prepare(op, tid, result) upcall to the application to
determine the transaction vote, where result is an empty byte buffer.
The application acquires any locks required by the transaction, and
returns its vote, releasing its locks if it decides to abort. If the appli-
cation is unable to acquire all locks due to a concurrently executing
transaction, it returns a CONFLICT response. If the application is voting
abort due to application logic, it returns an ABORT response, and can
write any further abort information into the result buffer. Otherwise
the return value is COMMIT and result is left empty.

2. The repository selects a proposed timestamp (proposedTS) for the
transaction. proposedTS must be greater than the lastExecTS value
at the repository and the highTS value provided in the Request.

3. The repository performs a stable log write to record the Request,
proposedTS, and status, so that this information will persist across

55

CHAPTER 4. GRANOLA PROTOCOL

failures.

4. The repository sends a 〈Vote, tid, rid, proposedTS, status, retry〉
message to the other participants, where status contains the response
from the application. The retry flag is set to false as it is only used
during retransmissions, as discussed in Section 5.4. If the repository is
voting abort (i.e., status is CONFLICT or ABORT), the repository ceases
processing the transaction, and responds to the client with a 〈Reply,
tid, rid, proposedTS, status, result〉 message.

5. The repository waits for votes from the other participants. If it receives
an abort vote (i.e., status is CONFLICT or ABORT), the repository re-
sponds immediately to the client with a 〈Reply, tid, rid, proposedTS,
status, result〉 message. It then issues an abort(tid) upcall to the
application, to revert any modifications and release locks acquired by
the transaction. The repository then ceases processing the transaction.

6. Once commit Vote messages have been received from all other part-
icipants, the transaction is assigned the highest timestamp (finalTS)
from all proposedTSs in the votes. The same finalTS value will be
chosen at all participants. The transaction is then committed by issu-
ing a commit(tid, result) upcall to the server application, where
result is an empty byte buffer used to store the result. The applica-
tion completes execution, releases any locks, and writes the return
value into the result buffer.

7. Finally a 〈Reply, tid, rid, finalTS, status, result〉 message is sent
to the client, where status is COMMIT.

Repositories are allowed to execute transactions out of timestamp or-
der when in locking mode, since we use strict two-phase locking in this
mode, which is sufficient to guarantee serializability in the absence of
timestamps [25]. We discuss our consistency properties in more detail in
Section 4.4.

56

4.3. REPOSITORY PROTOCOL

Impact on Other Transactions

Granola uses different protocols for independent transactions and single-
repository transactions during locking mode, to ensure that these trans-
actions do not conflict with locks acquired for concurrent coordinated
transactions.

Independent Transactions Independent transactions are processed using the
coordinated transaction protocol when in locking mode, and issued to the
application using prepare, commit and abort upcalls. A prepare upcall
for an independent transaction will never receive an ABORT response. The
client will retry the transaction with a new TID if it receives a CONFLICT

response.

Single-Repository Transactions We avoid holding locks for single-repository
transactions by attempting to execute them as soon as they have been
assigned a timestamp, but before the transaction is logged. The repository
attempts to execute the transaction by issuing a run upcall to the application;
in this case the application must check whether the transaction conflicts
with any currently-held locks. If there is a lock conflict, the application
returns false in response to the upcall.

The application does not acquire locks for run upcalls; it only checks
whether the transaction attempts to read or modify state that is currently
locked. This is typically achieved by recording an undo record for the
transaction, checking locks during execution and rolling back any changes
if there is a conflict. The application tracks whether or not any locks are
held at a given point in time, and only performs checks if there are active
locks. No checks are performed when the repository is in timestamp mode.

If a run upcall returns false, the repository responds to the client with a
CONFLICT response, and discards the transaction. No log write is required
for the aborted transaction, and the client proxy will retry the transaction
with a new TID.

If the run upcall returns true, the repository issues a stable log write to
record the timestamp and commit status for the transaction. The repository

57

CHAPTER 4. GRANOLA PROTOCOL

does not respond to the client until after the stable log write is compete, but
immediately updates its record of the lastExecTS timestamp so that future
transactions are assigned higher timestamps than the single-repository
transaction.

The repository must execute the transaction before logging, and cannot
instead execute single-repository transactions after they have been logged
as in the timestamp mode protocol. Since each repository is a replicated
state machine, it is essential that the backup replicas replay the same
sequence of operations as the primary replica. If the primary was to log the
transaction before attempting to execute it, it would not yet know whether
the transaction will commit or abort once the logging is complete. This
commit or abort decision is non-deterministic, since it depends on the order
in which concurrent distributed transactions commit, which is independent
of timestamp order when in locking mode. By executing before logging, the
primary is able to directly inform the backups of whether the transaction
commits or aborts.

The protocol for a processing committed transaction guarantees that
the single-repository transaction will be given a timestamp consistent with
the global serial order. The single-repository transaction will have been
given a timestamp higher than any previously-executed transaction, any
subsequent transaction will be given a timestamp higher than the single-
repository transaction, and any concurrent transaction is commutative with
the single-repository transaction, since there are no lock conflicts.

The protocol for read-only transactions in locking mode is the only part
of the protocol where the primary replica can execute a transaction before
informing the backups. This has implications for the recovery protocol,
which we discuss in Section 5.2.1.

4.3.6 transitioning between modes

So far we have discussed the protocols used when a repository is in time-
stamp mode and in locking mode, but have not described the protocol for
switching between modes. Our protocols for switching attempt to do so

58

4.3. REPOSITORY PROTOCOL

as quickly as possible, to avoid stalling coordinated transactions when in
timestamp mode, or using locking mode when not necessary. We perform a
thorough evaluation of the cost of switching modes in Chapter 6.

Switching to Locking Mode

If there are independent transactions in progress when a coordinated trans-
action arrives, the application needs to acquire locks for these transactions
before issuing a prepare upcall for the coordinated transaction.

The repository issues prepare upcalls, in timestamp order, for all indep-
endent transactions for which it has already sent a vote but has not yet
executed. If all upcalls proceed successfully without lock conflicts, the
repository transitions into locking mode and will complete execution of the
transactions using the locking mode protocol.

If a prepare upcall is unsuccessful and conflicts on a lock, the repository
must defer transitioning into locking mode until the upcall can be issued
successfully for all concurrent transactions. This can result in a coordinated
transaction being blocked waiting for independent transactions to complete.
Recovery from an extended period of blocking, as in the case of a failure, is
discussed in Section 5.3.

Switching to Timestamp Mode

If there are no current distributed transactions when the last coordinated
transaction is complete, then the repository can immediately switch back
into timestamp mode; the application only acquires locks for distributed
transactions and hence will have no active locks. It may be the case, however,
that there are still current active independent transactions for which locks
were acquired using the locking mode protocol. This scenario is likely under
our expected workloads of frequent independent transactions but infrequent
coordinated transactions.

To enable rapid transition to timestamp mode, the repository issues an
abort upcall for all independent transactions that underwent a prepare
phase but have not yet been committed. This releases any locks for these

59

CHAPTER 4. GRANOLA PROTOCOL

transactions, and allows the repository to transition into timestamp mode.
The transactions that were issued an abort upcall will be executed in
timestamp order using run upcalls once their finalTS is known.

Our experimental analysis indicates that the best protocol to use for
switching to timestamp mode is to immediately issue abort upcalls for any
active independent transaction, despite the overhead of undoing and re-
executing the transactions. We investigate other techniques for transitioning
into timestamp mode in Appendix B.

4.4 consistency

This section discusses the consistency properties of the Granola protocol,
along with the mechanisms used to provide consistency.

4.4.1 locking support

Granola requires application support to maintain serializability in locking
mode, by providing isolation between concurrent transactions. Typically this
will be achieved by using strict two-phase locking in the application [25].
Locking is not required when in timestamp mode, since each transaction
executes atomically with a single application upcall at each participant.

4.4.2 serializability

Timestamps in Granola define a consistent global serial ordering across
all transactions. This serial order is defined through the use of timestamp
voting and the use of clients to propagate timestamps between repositories.
When in timestamp mode, repositories always commit transactions in this
global serial order. This protocol thus guarantees global serializability. The
use of timestamps allows Granola to maintain serializability even without
locking.

Our protocol for independent distributed transactions allows each repos-
itory to execute its part of the transaction without knowing what is hap-
pening at the other participants: it only knows that they will ultimately

60

4.4. CONSISTENCY

select the same timestamp. This means that it is possible for a client to
observe the effects of a distributed transaction T at one repository before
another participant has executed it. Since a subsequent request from the
client will carry a highTS value at least as high as T, we can guarantee that
this request will execute after T at any participant.

Strict two-phase locking is used to provide transaction isolation dur-
ing locking mode. Strict two-phase locking is sufficient alone to provide
serializability in locking mode [25], and repositories may thus execute
transactions out of timestamp order when in this mode.

The local state at the repository in locking mode is state-equivalent to
an execution where each transaction is executed serially in timestamp order.
A given transaction T in locking mode will be assigned a timestamp higher
than any transaction that executed before T was prepared, and the locks
ensure that any concurrent transaction is commutative with T. Timestamps
may thus not represent the commit order of transactions in locking mode,
but nevertheless represent a valid serial order, since locking ensures that
any transactions that execute out of timestamp order are guaranteed not to
conflict.

The use of timestamps in locking mode ensures compatibility with
participants that are operating in timestamp mode, since all participants
will execute the transactions in an order equivalent to the global serial order.
Timestamps also allow a repository to transition in and out of locking mode
while maintaining serializability, since timestamps are used to define the
serial order in both transaction modes.

Timestamp Example

We describe an example execution trace which shows the use of timestamps
to ensure serializability, as illustrated in Figure 4.9. Each step in the sample
execution is described as follows:

Step 1: Client 1 issues an independent transaction to Repositories 1 and 2,
with TID 1 and highTS 0. Repository 1 chooses proposedTS 9 for the

61

CHAPTER 4. GRANOLA PROTOCOL

Reply (tid:1, ts:9)

Reply (tid:3, ts:11)

Reply (tid:1, ts:9)

Vote (tid:1, ts:9)

Request (tid:3, ts:10)

Reply (tid:2, ts:10)

Vote (tid:1, ts:3)

Vote (tid:1, ts:9)

Request (tid:2, ts:0)

Request (tid:1, ts:0)

Client 2 Repos. 1 Repos. 2

run (tid:1, ts:9)

log (tid:1, ts:9) log (tid:1, ts:3)

Client 1

run (tid:2, ts:10)

log (tid: 2, ts:10)

log (tid:3, ts:11)

tid3 blocked on
(tid:1, ts:3)

run (tid:1, ts:9)

run (tid:3, ts:11)

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 4.9: Example of a serializable execution, involving timestamp voting
and the propagation of timestamps by clients.

62

4.4. CONSISTENCY

transaction, while Repository 2 chooses proposedTS 3. Both reposito-
ries log the transaction record.

Step 2: Both repositories vote on TID 1, sending their proposed timestamp.
Repository 1 receives Repository 2’s vote, executes the transaction at
finalTS 9, sets lastExecTS to 9, and responds to the client. Reposi-
tory 2 does not yet receive Repository 1’s vote, and is not yet able to
execute the transaction.

Step 3: Client 2 issues a single-repository transaction to Repository 1, with
TID 2 and highTS 0. Repository 2 assigns this transaction ts 10, which
is higher than lastExecTS. The repository logs, executes and responds
to the client with ts 10, and sets lastExecTS to 10.

Step 4: Client 2 issues a single-repository transaction to Repository 2, with
TID 3 and highTS 10. Repository 2 assigns this transaction ts 11,
but cannot yet execute it, since TID 1 has not yet been executed and
currently has proposedTS 3. The repository thus blocks execution of
TID 3 until there are no other transactions with lower timestamps.

Step 5: Repository 2 finally receives Repository 1’s vote for TID 1 (retry
mechanisms are employed in the case of a lost message). Repository 2
assigns TID 1 a finalTS of 9, which is the highest timestamp from
the votes. Repository 2 then executes the transactions in timestamp
order, updates lastExecutedTS and responds to the clients.

This protocol ensures that serializability is maintained, with a global
serial history of {TID 1, TID 2, TID 3}.

Serializability in Granola relies heavily on the inclusion of highTS val-
ues in client Requests. If Client 2 didn’t include its highTS in Step 4,
Repository 2 may have executed TID 3 ahead of TID 1. This would violate
serializability, since the execution history {TID 3, TID 1} at Repository 2 con-
flicts with the histories {TID 1, TID 2} at Repository 1 and {TID 2, TID 3}
at Client 2. The propagation of timestamps on client requests prevents these
anomalies from occurring.

63

CHAPTER 4. GRANOLA PROTOCOL

4.4.3 external consistency

Granola does not provide external consistency [37], meaning that consistency
is not guaranteed when communication occurs outside the system. Consis-
tency in Granola relies on clients to propagate timestamp dependencies, as
seen in Step 4 of Figure 4.9. Out-of-band messages might not include these
timestamps, and thus violate our serializability protocol.

External consistency could be provided if a new transaction was delayed
until the completion of all independent transactions that were voted on
before the transaction arrived. We aim to minimize latency for single-
repository transactions in Granola, however, which precludes delaying
transactions to this extent.

Granola was designed as a client-server protocol, where clients typically
do not interact directly, except via the server state. This model matches that
of a typical web service or distributed database. In these scenarios, external
consistency is not required. If clients are expected to communicate directly,
and external consistency is required, then client-to-client communication
must include the highTS timestamp value of the sender.

In the absence of timestamps on out-of-band communication, external
consistency can only be violated within a small window of vulnerability
equal to the maximum clock skew between repositories. Since the delay
between clients and repositories is typically significantly longer than the
clock skew, violations of external consistency are unlikely in practice.

Proof of Window of Vulnerability

We present a proof here that external consistency can only be violated within
a window of time equal to the maximum clock skew between repositories.

Consider a transaction T1 issued to a set of participants {P0, · · · , Pn}.
Let W be the wall-clock time by which point all participants have received
T1 and sent their votes.

We assume that one participant receives a full set of votes and executes
T1. A client observes the result of T1 from this participant, communicates
this result using an out-of-band mechanism to another client, and that client

64

4.4. CONSISTENCY

issues a subsequent transaction T2 to participant P0, without including
an appropriate highTS value. We let B represent the time taken for this
sequence of events to take place, hence P0 will receive T2 at wall-clock time
W + B.

A violation of external consistency is only possible if P0 assigns a lower
timestamp to T2 than to T1, i.e.:

ts2 < ts1 (4.1)

where ts1 and ts2 are the timestamps assigned to T1 and T2 respectively.

We can compute a lower-bound on ts2, as assigned by repository P0, as
follows:

ts2 = max(clock value, highTS, lastExecTS)

= max(W + B + C0, highTS, lastExecTS)

≥ W + B + C0

≥ W + B + Cmin (4.2)

where C0 is the clock offset at repository P0 and Cmin is lowest (possibly
negative) clock offset of all repositories.

T1 will receive a timestamp equal to the highest vote from amongst the
participants, hence:

ts1 = max(clock value, highTS, lastExecTS)

= max(Wi + Ci, H1, Li)

where Pi is the participant that voted the highest proposedTS for transaction
Ti, Wi is the wall-clock time at which repository Pi received transaction T1,
and Ci is the clock offset at Pi. H1 is the highTS value provided for T1, and
Li is the lastExecTS value at Pi before time Wi.

Wi ≤W, by definition of W, and Ci ≤ Cmax, where Cmax is the maximum

65

CHAPTER 4. GRANOLA PROTOCOL

clock offset of all repositories, hence:

ts1 = max(Wi + Ci, H1, Li)

≤ max(W + Cmax, H1, Li)

In addition, H1 < W + Cmax, since the most recent transaction the client
observed would have been received at timestamp W‘ < W, and timestamp
H1 <= W‘ + Cmax. Similarly, Li < W + Cmax. We thus have:

ts1 ≤ W + Cmax (4.3)

Combining equations (4.1), (4.2) and (4.3), we have:

W + B + Cmin ≤ ts2 < ts1 ≤W + Cmax

W + B + Cmin < W + Cmax

B < Cmax − Cmin

B < maximum clock skew

External consistency can thus only be violated if the sequence of out-of-
band communication occurs within a time period B, which is less than the
maximum clock skew.

4.5 concurrency

We have described the Granola protocol in a sequential fashion to aid in
clarity. Granola allows for significant concurrency however. This section
describes the impact of concurrency on clients and repositories.

4.5.1 clients

The client API in Section 3.2.1 presents a blocking invocation interface
to client applications. Clients can issue multiple concurrent transactions,
however, by using multiple client application threads that issue invocations

66

4.5. CONCURRENCY

to a single client proxy, or by extending the client API to a non-blocking
interface.1

Granola provides serializability for all requests, but the relative ordering
of concurrent requests is determined by the protocol rather than by invoca-
tion order. The client proxy buffers responses to concurrent client requests,
and returns them to the client application in timestamp order.

The client proxy may not always receive responses from different reposi-
tories in timestamp order. It thus sets highTS to max(highTS, ts) when
processing a Reply messages, to ensure it always has a record of the highest
timestamp it has observed.

4.5.2 repositories

The message processing protocol in Granola is single-threaded, to minimize
the overhead of locking and synchronization that would be required to
support multiple concurrent handlers.2 We also issue run, prepare, commit
and abort upcalls one-at-a-time, to minimize concurrency control at the
application. The protocol is largely asynchronous and non-blocking, how-
ever, and is able to handle many transactions in parallel. Other transactions
are processed when waiting for timestamp constraints to be met, when
waiting for votes to arrive, or when waiting for stable log writes to complete.
Our replication protocol also allows for many log writes to be executed in
parallel, as discussed in Section 5.1.

Granola’s serializability constraint requires that transactions are executed
in timestamp order when in timestamp mode, which can lead to blocking
if a transaction has a final timestamp but is waiting for the execution of
transactions with lower timestamps. Significant blocking is rare in practice,
since timestamp constraints are usually met: the highTS value provided
by clients is typically lower than the clock value at the repository, since
clock skew between repositories is typically lower than the time between

1Our implementation of the client proxy is thread-safe and supports multiple application
threads issuing concurrent transaction invocations.

2While our repository implementation uses a single handler thread, we also use addi-
tional threads to handle messaging and replication, as described in Section 6.1

67

CHAPTER 4. GRANOLA PROTOCOL

subsequent client requests. Voting also completes quickly, in a single one-
way message delay.

As in all systems that offer strong consistency, there may be a period of
unavailability if failures occur within a specific window of vulnerability. In
some rare circumstances a repository may stall if it is unable to communicate
with a participant for a given transaction. This reflects a trade-off made to
provide consistency and performance, at the expense of a potential loss of
availability. We define our window of vulnerability, and describe techniques
to mitigate failures, in Chapter 5.

68

5
FA I L U R E S A N D R E C O V E RY

This chapter discusses the mechanisms used in Granola to tolerate failures.
We first discuss the state machine replication protocol used to enable reposi-
tory fail-over, followed by a discussion of the protocols used within Granola
for handling the failure of individual nodes. We then discuss protocols for
dealing with the correlated failure of the nodes that comprise a replicated
repository, and for dealing with network partitions that cause a repository
to become unavailable. Finally we discuss the mechanisms for retrying com-
munication in response to network loss or failures, and the use of duplicate
detection to identify retransmissions.

5.1 replication

Repositories implement state machine replication [48] to provide durability
and fail-over in response to individual node failures. State machine replica-
tion is used to replicate each stable log write, and to replace failed nodes.
Disk writes are commonly used in databases to provide durability for log
writes, but they do not provide fast recovery from failure.

Our replication protocol is based on Viewstamped Replication [38, 43],
which implements a consensus protocol similar to Paxos [35]. Repositories
are replicated, using a set of 2 f + 1 replicas to survive f crash failures.

69

CHAPTER 5. FAILURES AND RECOVERY

One replica is designated the primary, and carries out the Granola protocol.
Backup replicas initiate a view change to select a new primary if the old
one appears to have failed. All messages from clients and other reposito-
ries are sent directly to the primary replica at the repository. If a backup
replica receives a Granola message, it forwards it to the primary. The only
communication with backup replicas is via the replication protocol.

We made a number of improvements to the traditional Viewstamped
Replication protocol to improve performance and manageability, including:

• Modifications to the view change protocol so that disk writes are not
required.

• Batching to improve throughput under high load.

• Application state diffs perform state-transfer more efficiently.

• Fewer message delays for read/write operations.

• A reconfiguration protocol to allow moving the replica group to a
different set of nodes, or to allow changing the size of the replica
group.

A comprehensive description of our replication protocol, including the
improvements above, is available in our paper Viewstamped Replication Revis-
ited [39].

Stable log writes involve the primary sending the log message to the
backups as a Prepare message and waiting for f PrepareOK replies, at
which point the log is stable. This process takes only two one-way message
delays, as shown in Figure 5.1. The primary does not stall while waiting for
replies, and may continue processing incoming requests in the meantime.
The replication protocol uses batching of groups of log messages [18], to
reduce the number of messages sent to backups; this is analogous to group
commit, where a number of log messages may be committed simultaneously.

Our protocol does not require disk writes as part of the stable log
write, since we assume that replicas are failure-independent. Information

70

5.2. INDIVIDUAL FAILURES

Prepare

PrepareOK

Primary Backup Backup

batched

Repository

Figure 5.1: The basic Viewstamped Replication protocol as used in Granola
to provide stable log writes. More complex communication is required
when issuing a view change to recover from node failures.

is written to disk in the background, e.g., as required by main memory
limitations. Failure-independence can be achieved by locating replicas in
disjoint locations, storing log entries in battery-backed RAM, or equipping
replicas with a UPS and flushing to disk when a power failure occurs.

5.2 individual failures

Granola is designed to seamlessly tolerate the failure of individual nodes.
This section describes the protocols for recovering from repository and
client failures.

5.2.1 repository recovery

We now discuss how the replication protocol is used to support recovery at
each repository.

Logging

The primary replica at each repository follows the Granola protocol as
described in the previous chapters. Backup replicas receive and log all
stable log writes. The primary also piggybacks, on subsequent log messages,

71

CHAPTER 5. FAILURES AND RECOVERY

information about the commit status and final timestamps assigned to each
transaction that has been executed, which is also logged by the backups.

Each log message is of the form 〈msg, proposedTS, status, [final-
List]〉 where msg is the client’s Request message, proposedTS is the
currently-assigned timestamp for the transaction, status is the current
commit or abort status (COMMIT, CONFLICT or ABORT), and finalList is an
optional list of piggybacked commit information. finalList takes the form
〈TID, finalTS, status〉, and includes the TID, final assigned timestamp,
and final status for transactions that have recently completed.

Each backup replica stores a log as shown in Figure 5.2.1 Each entry in
the log corresponds to a transaction, sorted by timestamp, and records the
logged transaction information, along with a final flag indicating whether
the transaction has a finalTS or proposedTS timestamp. Timestamps are
only recorded as final once a piggybacked message is received indicating the
final timestamp for that transaction. Non-final timestamps for distributed
transactions that are still awaiting votes can be modified in subsequent log
messages. Non-final timestamps for single-repository transactions can also
be modified later if the transaction is reassigned a timestamp due to a lock
conflict.

The log contains a prefix (indicated in the figure) of entries with a final
timestamp value. Since the log is stored in timestamp order, the transactions
corresponding to these final entries can be executed and removed from the
log.

The replica maintains the same data structures for duplicate detection
and retransmission as the primary, so that this information is available if the
replica becomes the primary in a future view. These structures are described
in Section 5.4.

View Changes

The replication protocol triggers a view change if the primary is faulty,
which promotes one of the backups to be the new primary. The view

1This log should not be confused with the internal logging in the Viewstamped Replica-
tion protocol, which is treated as a black box by Granola.

72

5.2. INDIVIDUAL FAILURES

log nal: Truemsg ts: 5 status

nal: Truemsg ts: 8

nal: Falsemsg ts: 9 status

nal: Truemsg ts: 13

nal: Falsemsg ts: 17

......

nal: Falsemsg ts: 20

executable
prex

status

status

status

status

Figure 5.2: Log recorded at each non-primary replica. The log is stored in
timestamp order, and records each current transaction. Each shaded log
entry represents a transaction that has been assigned a final timestamp. The
indicated prefix of shaded log entries may be executed and pruned from
the log.

change protocol ensures that the new primary has a local state that includes
log entries for all transactions that completed a stable log write at the
old primary. This information will include any stable log write that has
occurred, but may not contain information about operations that happened
at the old primary after this point, such as votes being sent or received,
or subsequent transaction execution. This information can be recovered,
however, by re-running the voting protocol for these transactions, based on
information in the log.

The new primary temporarily halts receiving new transaction requests,
and responds with a CONFLICT vote for these transactions to avoid blocking
other participants while the view change proceeds. The new primary then
iterates through the stable log for all entries that do not yet have a final
timestamp (i.e., those where final is false), and sends a 〈Vote, tid, rid,
proposedTS, status, retry〉 message to the other participants for these
transactions, with the proposedTS and status from the log. The TID is
obtained from each msg, and the same RID is shared by all replicas for
the repository. The retry flag is set to true in these votes, to prompt the

73

CHAPTER 5. FAILURES AND RECOVERY

recipients to resend their previous votes for the transactions.

The new primary can then resume normal operation and start accepting
new transactions, while handling the responses to the Vote messages using
the standard request processing protocol. This protocol requires that other
repositories keep a log of old Vote messages to facilitate resending votes
for a repository that just underwent recovery. We discuss maintenance and
garbage collection for this state in Section 5.4.

Efficiency

Granola imposes significantly less load on the backups than the primary,
since the backups do not need to manage locks, send votes and responses,
or attempt to execute transactions that were later aborted. The backups also
do not need to execute read-only transactions, since these do not modify
the state on the replicas; this is of significant benefit for typical read-heavy
workloads.

Load on the backups can be reduced even further by designating f
of the nodes in each replica group as witnesses, which participate in the
protocol only when other replicas are unresponsive or have failed [38]. Since
witnesses have no computational load under normal circumstances, they
can be colocated on nodes used as replicas for other groups. Since any
backup or witness may be required to act as a primary under some failure
conditions, they must be capable of supporting the full request load.

In wide-area deployments, repositories that share related data can also
have their primaries colocated in the same data-center where possible.
This minimizes voting latency in the absence of failures. Protocols for
dynamically reconfiguring replica groups to relocate replicas and witnesses
are left as future work, as described in Section 9.1.3. We describe how to
migrate data between repositories in Section 7.1.4.

Ensuring a Single Primary

State machine replication may result in two replicas concurrently believing
they are the primary. This can be the case, for example, when there is

74

5.2. INDIVIDUAL FAILURES

message loss and the old primary does not hear about a view change to
a new primary. Some clients may also not immediately learn of the view
change, and continue issuing requests to this old primary.

Read-write transactions do not pose a problem here, since the primary
must perform a stable log write before processing each transaction, and will
discover that a view change has occurred. Read-only transactions execute
solely at the primary replica however. If this replica is no longer the current
primary, it may issue responses to reads that do not include recent writes,
and hence violate serializability.

We avoid this problem by using the leases mechanism introduced in
Harp [38], which guarantees that there will not be two primaries running
simultaneously. Each primary can accept operations only if it holds an active
lease from f other replicas. Replicas wait at least as long as this lease time
before initiating a view change, ensuring that the old primary can no longer
accept requests. The lease protocol depends on loosely synchronized clock
rates for correctness.

We introduce a protocol for executing read-only transactions at backup
replicas in Section 7.2. This protocol not only reduces load on the primary
replica, but also avoids the requirement of synchronized clock rates for
correctness.

Discarding Unlogged State

Section 4.3.5 described how single-repository transactions can be run with-
out locking even when a repository is in locking mode, by executing the
transaction before issuing the stable log write. If the primary replica fails or
a view change occurs before the stable log write is complete, however, any
such transaction will not persist into the new view. This protocol ensures
correctness by not externalizing the effects of the single-repository trans-
action until after the stable log write. The client will eventually retry the
transaction in the new view.

Under ordinary failure conditions, the old primary will have crashed
and will have lost its local state. When the old primary recovers, it will

75

CHAPTER 5. FAILURES AND RECOVERY

rebuild its state using the Viewstamped Replication state transfer protocol,
before rejoining the replica group. If the old primary did not lose its state,
however, it may have executed some single-repository transactions that
didn’t persist into the new view. When the old primary becomes aware of
the new view, it must roll back its state so as not to include any unlogged
single-repository transactions. One solution to this problem is to maintain
undo records for any single-repository transactions that have not yet been
logged. Since this is a rare occurrence however, the most simple solution
is to require the old primary to roll back its state to the most recent View-
stamped Replication checkpoint, and replay any new transactions from the
Viewstamped Replication log [39].

5.2.2 client recovery

Clients can fail without affecting the operation of the system as a whole.
Repositories use retry mechanisms to ensure that a distributed transaction
will complete even if the client fails before sending it to all repositories, as
described in Section 5.4. We need to ensure, however, that a client chooses an
appropriate sequence number and timestamp before issuing a subsequent
request after recovering.

Sequence Numbers

Sequence numbers are used to generate TIDs, which uniquely identify each
transaction. A client must thus ensure that it does not reuse a sequence
number from a transaction that was active before it failed.

We ensure uniqueness of sequence numbers by using sequence number
leases. Each client records a sequence number range on disk (e.g., 10000–
20000) and may freely use sequence numbers within this range. The client
records a subsequent range once the current sequence number space has
been exhausted. When a client recovers from failure, it reads the previous
range from disk, and records a lease for a subsequent range before resuming
operation. Any sequence number chosen from this new range is guaranteed
to be higher than that used before the failure occurred.

76

5.2. INDIVIDUAL FAILURES

Timestamps

Clients are required to include their highest-observed timestamp, highTS,
in each request, to ensure that each request executes after any transaction
that the client previously observed. This value is redundant, however, once
all repositories have a local clock value higher than the highTS value at
the client; at this point any subsequent transaction will always be issued a
timestamp higher than the highest timestamp observed by the client.

A client determines a safe highTS value after failure by first synchroniz-
ing its clock, and then ensuring that a period of time equal to the maximum
expected clock skew has elapsed. After this point the client adopts its local
clock value as its new highTS value, which will be at least as high as the
timestamp it knew before it failed. Typically a client will have failed for
longer than the maximum expected clock skew, and hence no waiting is
required.

Note that here we are depending on loosely synchronized clock values
for correctness, where otherwise we have not needed this assumption.2 If it
is infeasible to depend on loosely synchronized clocks, clients may adopt
timestamp leases, similar to sequence number leases, where they will only
accept a response if it falls within a timestamp range it has written to disk.
If a response has a timestamp higher than this range, the client will write a
new lease to disk before processing the response.

In some deployment scenarios there are no explicit consistency con-
straints between client sessions, e.g., when the client keeps no stable lo-
cal record of transaction state. In these deployments the client recovers
without any knowledge of previous transactions, and can safely set its
latest-observed timestamp to 0.

2Our view change protocol relies on loosely synchronized clock rates for correctness,
which is an easier guarantee to provide than loosely synchronized clock values.

77

CHAPTER 5. FAILURES AND RECOVERY

5.3 correlated failure

Replication masks the failure of individual replica nodes, but cannot provide
availability if an entire replicated repository becomes unavailable. Given
that a set of 2 f + 1 replicas can tolerate at most f simultaneous node failures
within the group, the repository will become unavailable if more than half of
the replicas fail simultaneously. If replicas are located in failure-independent
partitions, this level of correlated failure will typically only be the result
of a network partition that results in a significant fraction of replicas being
unable to communicate with the rest of the system.

Permanent loss of an entire replicated repository may result in data loss
and will likely require human intervention. This section instead addresses
the situation where a good repository is unable to obtain votes from an
unresponsive participant. When this happens the repository may have
some incomplete distributed transactions that are awaiting votes from the
participant. The repository is unable to unilaterally abort an incomplete
transaction, since the unresponsive participant may have already received a
full set of votes and executed the transaction before failing.

Read-only distributed transactions are not included in the set of incom-
plete transactions, since they do not modify the application state at any of
the participants, and hence the repository can issue a CONFLICT abort to
the client and discard the transaction; the client will retry the transaction
with a new TID if it receives a CONFLICT response. Since we expect typical
workloads to consist of a large fraction of read-only transactions, this can
significantly reduce the number of incomplete transactions.

A repository first makes multiple attempts to establish communication
with a failed participant. The repository attempts to resolve incomplete
transactions with other participants by resending each Vote message with
the retry flag set to true. If any participant has already committed or
aborted the transaction, it will respond with a Reply message indicating the
transaction result. The repository can then adopt this outcome and resume
normal operation.

If the repository is in locking mode, it will have already acquired locks

78

5.3. CORRELATED FAILURE

for the incomplete transactions. The repository must thus continue holding
locks for these transactions until the participant recovers and sends its
vote. Any subsequent transaction received in the meantime will be aborted
with a CONFLICT response if it conflicts with a lock held for an incomplete
transaction. This protocol allows the repository to make progress provided
that an incomplete transaction does not lock a significant fraction of the
application state. If a participant fails while a transaction is holding locks
on the entire application state, then the repository will be stalled until the
participant recovers; this fate-sharing between transaction participants is
also encountered in two-phase commit.

Recovery from timestamp mode is more complex, since the repository
does not already have locks on the independent transactions. We discuss
the recovery protocol for timestamp mode in the following section.

5.3.1 recovery from timestamp mode

If the repository is running in timestamp mode, it will not have acquired
locks on the incomplete transactions, and must thus execute transactions
in timestamp order. In addition to the set of incomplete transactions, this
results in a set of blocked distributed transactions, for which the repository
has a full set of votes and has assigned a final timestamp, but can’t yet
execute because they are queued behind an incomplete transaction with a
lower timestamp.

An example of a queue of incomplete and blocked transactions at a
given repository is shown in Figure 5.3. The repository has sent votes
for transactions 31 and 12, but has not yet received votes from a failed
participant. Transactions 2, 16, 54 and 8 have a full set of votes and a final
timestamp, but can not yet be executed because they do not have the lowest
timestamp at the repository.

Neither single-repository transactions nor read-only independent trans-
actions are included in the set of blocked transactions. Since the repository
has not yet responded to the client for the read-only independent trans-
actions, it can safely discard the transaction and respond to the client with a

79

CHAPTER 5. FAILURES AND RECOVERY

execution
queue

tid: 31 ts ≥ 5

tid: 2 ts: 8

tid: 12 ts ≥ 9

tid: 16 ts: 13

tid: 54 ts: 17

tid: 8 ts: 20

incomplete

blocked

... ...

Figure 5.3: Queue of logged transactions at a stalled repository, in time-
stamp order. The shaded transactions are incomplete awaiting votes from a
failed participant and do not yet have a final timestamp. The non-shaded
transactions have a final timestamp, but are blocked behind incomplete
transactions, waiting to be executed in timestamp order.

CONFLICT abort response. Single-repository transactions can also be aborted,
by issuing a stable log write to record the abort status at the backups, then
responding to the client with a CONFLICT abort response. The client proxy
will retry these transactions with a new TID, but the repository will not
process these retries until the blocking has been resolved.

Similarly, distributed transactions that the repository has not yet voted
for can also be safely aborted, and are not included in these sets. As an
optimization, the repository may process single-repository transactions that
have a highTS value lower than the lowest incomplete transaction, since
these transactions can be assigned a timestamp ahead of the incomplete
transactions in the serial order, and be executed without blocking.

The relative ordering of independent transactions is important in time-
stamp mode, since the transactions might conflict. Transactions cannot
conflict in locking mode, since the repository checks locks before sending a
vote, and aborts the transaction if there is a lock conflict. Concurrent indep-
endent transactions may modify the same data items, and thus their results
may depend on the order in which they are run. This order depends on the

80

5.3. CORRELATED FAILURE

final timestamp order, which is not yet known for independent transactions.

The objective of recovery in timestamp mode is to acquire locks on the
entire set of incomplete and blocked transactions, so that the repository
can process future transactions that do not conflict with these locks. The
repository can also execute blocked transactions that do not conflict with
the remaining transactions.

If none of the blocked and incomplete transactions conflict, the repository
can transition into locking mode immediately and follow the protocol
discussed above. If there is a lock conflict however, the repository must
acquire these locks in an order-independent way. We discuss these protocols
in the following sections.

Transitioning into Locking Mode

The repository first attempts to transition into locking mode, using the
same protocol for switching into locking mode under normal operation, by
acquiring locks on the incomplete and blocked transactions in the current
timestamp order. This order is defined by the proposedTS for incomplete
transactions and the finalTS for blocked transactions. Locks are acquired
by iterating through the list of incomplete and blocked transactions, and
executing a prepare upcall to the server application, stopping if there is a
lock conflict.

If the repository receives a COMMIT response for a prepare upcall, then
the application was able to acquire locks for the transaction in this order,
without any conflicts. If the prepare is successfully able to acquire locks for
an incomplete transaction, the repository will continue holding the locks. If
the prepare is successful for a blocked transaction, then the repository exe-
cutes it immediately by issuing a commit upcall, and responds to the client;
the blocked transaction will not conflict with any incomplete transaction
possibly ahead of it in the final serial order, since any incomplete trans-
action after it in the current timestamp order will eventually be assigned a
finalTS timestamp at least as high as its current value.

If the repository receives a COMMIT response for every prepare upcall,

81

CHAPTER 5. FAILURES AND RECOVERY

then it will have executed every blocked transaction, and acquired locks
on all incomplete transactions. It may thus transition into locking mode,
and resume operation following the locking mode protocol in the previous
section.

If one of the prepare upcalls returns with a lock conflict, however (i.e., a
CONFLICT response), the repository must halt iterating over the transactions.
In the absence of conflicts, the repository can acquire locks for transactions
in any order, since none of the transactions interfere. If there is a lock conflict,
however, the repository cannot attempt to prepare subsequent transactions
in the queue, since they may depend on the locks that should have been
acquired for the conflicting transaction.

In order to make progress, the repository must ensure that the applica-
tion requires locks for all remaining transactions regardless of what order
they are serialized in. We describe the relevance of lock ordering in the
following section, followed by the interface and protocol for obtaining locks
irrespective of ordering.

Relevance of Lock Ordering

Blocked transactions have a finalTS timestamp, and will maintain their
position in the serial order. Incomplete transactions only have a proposedTS

timestamp, however, and will end up being serialized at some finalTS ≥
proposedTS, once the remaining votes are eventually received.

If the repository is able to acquire locks on all transactions in the incom-
plete and blocked sets, then these transactions must not conflict and can
be committed in any order. If there is a lock conflict, however, the order in
which locks are acquired may affect transaction outcomes.

An example of a transaction where the lock ordering matters is shown in
Figure 5.4. This transaction performs a bank transfer if there are sufficient
funds, or otherwise does nothing. The application acquires locks on both
account balances if there is sufficient funds to perform the transfer, but only
one on one balance if there are insufficient funds.

Consider three accounts, A, B and C, which are replicated across a set of

82

5.3. CORRELATED FAILURE

/*
* Simplified transaction operation to transfer money from

* one account to another, if there are sufficient funds.

*
* Ignores details of undo logging, return status, etc.

*/
void transferFunds(Account from, Account to, int amount) {

lock(from);
if (from.balance() >= amount) {

lock(to);
from.withdraw(amount);
to.deposit(amount);

}
}

Figure 5.4: Simple funds-transfer operation where the lockset is a function
of the system state.

repositories, and start off with balances of $0, $0 and $10 respectively. The
following two transactions are issued concurrently:

T1: transferFunds(A, B, 10)

T2: transferFunds(C, A, 10)

If T1 is serialized before T2, the first transfer will fail, and the cumulative
lockset for the two transactions will be {a, c}. If T2 is serialized before T1,
however, both transfers will succeed, and the cumulative lockset will be
{a, b, c}. If one of T1 or T2 is a incomplete transaction, the repository does
not know which order they will eventually be serialized in, and hence needs
to acquire all locks that could be required in any possible ordering.

Order-Independent Locking

Our solution to the problem of transaction ordering is to require the ap-
plication to acquire locks for transactions independently of the order in
which they are prepared. In the case of the bank transfer, this would involve
acquiring locks on the combined lockset {a, b, c}, since it encapsulates a

83

CHAPTER 5. FAILURES AND RECOVERY

superset of all possible orderings. We refer to the complete lockset for a
transaction irrespective of ordering as the lock-superset for the transaction.
The lock-superset is only required during recovery from failure, and is not
used in normal-case processing.

Acquiring a lock-superset is closely related to lock granularity escalation
in a DBMS. If a transaction updates different individual tuples depending
on database state, then escalation from tuple-level locks to range locks or
table-level locks may be used to cover all possible tuples.

Granola’s name service uses coarse-grained IDs to map data partitions
to repositories, as described in Section 7.1.2. In workloads that are pre-
dominately comprised of independent transactions, these IDs can be used
as the unit of lock granularity, since locking will only be employed when
recovering from correlated failure. In these scenarios the locksets are also
independent of the transaction ordering.

Avoiding Order-dependent Transactions For many applications, transactions
are already order-independent, and the lock-superset is the same as the set
of locks acquired by a regular prepare upcall. This is particularly the case
for transactions that update fields that are known ahead of time [10]. The
Sinfonia protocol is applicable to a wide variety of transaction processing
applications [10], yet requires that the locksets for each transaction are
provided a priori by the client. Any application that can be implemented
using Sinfonia could also be implemented using Granola, using the client-
provided lockset as the lock-superset.

Thomson and Abadi argue that locksets can be computed in advance
for a large fraction of transactions in online transaction processing work-
loads [53], and hence these locks are independent of transaction ordering.
For transactions where locks do depend on transaction ordering, they pro-
pose decomposing a transaction into two sub-transactions: a read-only
transaction that determines which tuples will be locked, followed by a
read-write transaction that will abort if the set of tuples has changed in the
meantime. The authors argue that the overhead for such an approach is
“almost negligible” in typical workloads.

84

5.3. CORRELATED FAILURE

// acquires any locks that could be required if preparing
// the trans at any point in the serial order
// acquires additional handle on locks if there's a conflict
// returns true if no conflict, but acquires locks regardess
boolean forcePrepare(ByteBuffer request, long tid);

Figure 5.5: Recovery Interface. Applications must extend this interface to
support recovery from correlated failure while in timestamp mode.

For example, the TPC-C payment transaction may have to look up a
customer name to determine the primary key corresponding to the customer.
This payment transaction can be broken down into a single-repository
transaction that first looks up the key corresponding to the customer name,
followed by an independent transaction that deterministically locks the
record indexed by this key, and will abort if the mapping is no longer valid.
The second transaction will only abort if the customer name is changed
extremely frequently, which is an unlikely scenario. The authors make the
general claim that “real-life OLTP workloads seldom involve dependencies
on frequently updated data” [53], and hence it is reasonable to assume that
a large fraction of transactions can be expressed such that the lockset is
equivalent to the lock-superset.

Recovery Interface

Acquiring lock-supersets for conflicting transactions requires extensions to
the server application interface. Figure 5.5 shows this application interface.

The forcePrepare upcall is similar to the prepare upcall, but it differs
in two key ways:

1. The application acquires the lock-superset for the operation, rather than
the order-dependent lockset.

2. The application must acquire locks on the full lock-superset, regardless
of whether there are lock conflicts. The application must acquire
multiple handles on the same lock in the case of conflict.

85

CHAPTER 5. FAILURES AND RECOVERY

The second point is required since multiple transactions in the queue
may require the same locks. If transaction t1 has lock-superset {a, b} and
transaction t2 has lock-superset {b, c}, then the application must acquire
lock b for both transactions.

The application returns true for the forcePrepare upcall if there were
no conflicts, but acquires the locks even if returning false. The locks acquired
by the forcePrepare will be released when the repository commits or
aborts the transaction, as described in the following section.

Recovery Algorithm

After attempting to transition into locking mode, as described previously,
the repository will have a set of incomplete transactions for which locks
were acquired, followed by a set of blocked and incomplete transactions
that have not yet been locked. The repository first issues an abort upcall for
the first set of transactions, to release their locks in preparation of adopting
order-independent locking.

The repository then iterates through the incomplete and blocked trans-
actions in current timestamp order, and issues a forcePrepare upcall for
them. If the application returns true in response to a forcePrepare up-
call for a blocked transaction, then the transaction must not conflict with
any transaction possibly ahead of it in the final serial order, and can be
committed and executed then removed from the queue.

Once the lock-supersets have been acquired for all transactions in the
incomplete and blocked queue, the repository can switch into locking mode
and resume accepting new transactions. The remaining incomplete and
blocked transactions can be executed in timestamp order, once votes are
eventually received for the incomplete transactions and their position in the
serial order is known.

Fine-Grained Recovery

The protocol described in the previous section assumes that it is possible to
determine a lock-superset for each transaction, which is independent of the

86

5.4. RETRIES AND DUPLICATE DETECTION

order in which the transaction is run. This is possible for all transactions,
but in the degenerate case it may involve acquiring a lock on the entire
application state.

Our original protocol for recovery did not require the application to com-
pute lock-supersets, and instead issued a series of upcalls to the application
to acquire individual locksets for the incomplete and blocked transactions,
in all possible execution orders.

There are many constraints on the ordering of these transactions, which
reduces the number of orderings that need to be evaluated. The order of
blocked transactions is known once they have been assigned their final
timestamps. There are also ordering constraints between blocked and in-
complete transactions, since a incomplete transaction will end up with a
final timestamp at least as high as its current proposed timestamp. Moreover,
if multiple transactions commute, then any permutation of their respective
orderings is equivalent.

Given these constraints, we designed and implemented a search algo-
rithm that explored all possible distinct transaction orderings, and deter-
mined the combined locksets for these orders. This search process is efficient
if the majority of transactions are blocked and there are only a few incom-
plete transactions. The algorithm is unfortunately extremely inefficient if
there are a large number of conflicting incomplete transactions: in the worst-
case the search space is O(n!) in the number of incomplete transactions,
which is clearly prohibitive in many failure scenarios. We thus instead opted
to require a concept of lock-supersets, and avoid thus this search process.

5.4 retries and duplicate detection

Each repository maintains information about recently executed transactions,
to allow it to resend messages to clients or participants in case of message
loss or a failure, and to identify duplicate messages. Granola uses fairly
standard techniques for handling retries, duplicate detection and garbage
collection, which we outline here for completeness.

87

CHAPTER 5. FAILURES AND RECOVERY

Responding to Repositories

The repository stores a copy of each transaction Request it receives, and can
use this to forward the transaction to a participant that has not received the
request. The repository can discard a Request message once it has received
a full set of votes for the transaction, since every participant must have a
stable record of the transaction before it sends its vote.

The repository must also store a copy of Vote messages it has sent, since
a vote may be lost due to network failure or a view change that occurred at
a participant. If a participant is missing a vote from the repository, it will
resend its own Vote message, including a retry flag set to true. The retry
flag signals to the repository to resend its vote.

The repository is able to discard a Vote message once all participants
have executed the transaction and piggybacked the final transaction status
into their log. Participants communicate this information to each other in
acknowledgment messages or in subsequent votes.

Responding to Clients

The repository must keep a copy of recent Reply messages, to identify
duplicate client requests and resend previous replies in case of message
loss. The repository cannot rely on acknowledgments from clients, how-
ever, since a client may become disconnected or fail without notice. Any
unacknowledged Reply messages are thus stored in a circular buffer, which
facilitates resending replies to clients within a certain time window. If a
client is disconnected for a period longer than this window, the reply may
be lost, and the client will have to issue a subsequent transaction to observe
the current server application state.

88

6E VA L U AT I O N

This chapter presents an evaluation of Granola’s performance characteristics.
We use a set of microbenchmarks along with theoretical models to examine
the throughput, latency and scaling characteristics of the system under a
variety of configurations. We also perform a detailed analysis of how often
a repository operates in timestamp mode, where it is able to exploit the
main advantages of the Granola protocol. We follow this analysis with a set
of real-world macro-benchmarks, using the TPC-C transaction processing
benchmark.

6.1 implementation

We implemented Granola in Java, with full support for the API presented
in Figures 3.3 and 3.4. This implementation provides reliability and re-
coverability, including message ordering, duplicate detection, retries, and
recovery from client and repository failures. The implementation does not
include a full distributed replication protocol; replication is implemented
locally at each repository using a model of a batched replication protocol,
using delay measurements from our full implementation of Viewstamped
Replication [39] on our testbed.

We use TCP for communication between nodes, but implement our own

89

CHAPTER 6. EVALUATION

retransmissions and do not rely on TCP guarantees for correctness. Mes-
sage serialization is performed using Google’s Protocol Buffers library [9].
Network communication is handled by a non-blocking network library we
built using Java NIO and a single selector thread.1

Repositories are implemented using an event-based model which uses
a single handler thread to process transaction requests, since the Granola
protocol does not contain disk stalls or user stalls. Application upcalls are
blocking and execute in this same handler thread in our implementation;
the Granola protocol allows for running the application in a separate thread,
but this was not deemed necessary in our benchmarks.

6.1.1 workloads

Our micro-benchmarks examine a counter service built on the Granola
platform. Each update modifies either a counter on a single repository, or
counters distributed across multiple repositories. We vary the conflict rate
for coordinated transactions by adjusting the ratio of conflicting updates
issued by a client. Since the protocol for read-only operations is similar to
many other distributed storage systems, these benchmarks focus exclusively
on transactions that mutate (and observe) data.

We also examine an implementation of the TPC-C transaction processing
benchmark, built atop the Granola platform. This benchmark is discussed
in more detail in Section 6.7.

6.1.2 sinfonia

We compare the performance of Granola against the transaction coordina-
tion protocol from Sinfonia [10], which uses somewhat a more traditional
lock-based version of two-phase commit. This protocol requires the involve-
ment of dedicated master nodes to coordinate distributed transactions, and

1We also developed a multi-threaded thread-per-connection network library with block-
ing network IO, while experimenting with system performance. This library achieved
similar performance to the non-blocking version, but offered lower throughput when
under congestion collapse.

90

6.1. IMPLEMENTATION

Client Master Repository Repository

Request

Reply

Vote

Forward

commit commit

log write log write

prepare prepare

Commit

time

Figure 6.1: Protocol timeline for distributed transactions in the Sinfonia/Two-
Phase Commit implementation.

involves an additional phase of communication compared to Granola when
transactions are issued by a remote client. Unlike many implementations
of two-phase commit, however, the Sinfonia protocol only requires a single
stable log write, and supports one-round transactions, as in Granola. The
Sinfonia protocol for distributed transactions is illustrated in Figure 6.1. The
protocol for single-repository transactions is similar to the protocol used in
Granola, except that locking is used instead of timestamps.

Sinfonia does not support general operations, and instead requires clients
to explicitly specify the lock sets in each transaction request.2 We extended
the Sinfonia protocol by allowing the use of prepare application upcalls
to determine transaction lock sets on the server side. This provides a fair
comparison for Sinfonia against Granola, and allows support for complex
applications such as TPC-C.

Our implementation of Sinfonia uses both read locks and write locks to
avoid conflicts for read-only transactions, and avoids deadlock by aborting
any transaction that encounters a lock conflict. The client retries aborted

2The Sinfonia authors present an outline of how the protocol could be used to support
general operations, but do not implement or fully-develop these extensions [10].

91

CHAPTER 6. EVALUATION

transactions after a binary exponential backoff. Locking is required for
all distributed transactions, since Sinfonia does not support a timestamp-
based concurrency control mode. We avoid locking for single-repository
transactions when there are no concurrent distributed transactions, although
locks must be acquired when there are active distributed transactions.

We used a single master node in our experiments, and hence our Sin-
fonia results do not suffer from aborts due to contention from multiple
masters [10].

6.1.3 experimental setup

We deployed our implementation on a cluster of ten 2005-vintage dual-core
3.2 GHz Xeon servers with 2 GB RAM to serve as repository nodes, along
with ten quad-core 2.5 GHz Core2 Quad desktop machines with 4 GB
RAM to serve as client nodes. The Core2 Quad desktop machines offer
significantly higher performance than the older Xeon nodes, and are used
to support multiple concurrent clients on a given machine, to fully load the
repositories. We use a high-performance 16-core 1.6 GHz Xeon server with
8 GB RAM to serve as the master node when comparing against Sinfonia,
since Sinfonia experiences significant load on the master. These machines
were connected by a gigabit LAN with a network latency of under 0.2 ms.
Wide-area network delay is emulated by blocking outgoing packets in our
network library.

The results in this chapter present the maximum practical system through-
put observed on each configuration. As is typical when increasing request
load, Granola eventually reaches a point of maximal capacity, at which point
latency rapidly increases and throughput plateaus. When operating with
our non-blocking network library and a very large number of clients, we
were often able to push the system beyond this point, achieving even higher
throughput at a cost of excessive client delay due to queuing in the protocol.
In our experiments in this chapter we instead set client load appropriately
to maximize throughput while keeping latency within reasonable bounds,
on the order of a few milliseconds.

92

6.2. BASE PERFORMANCE

Our figures show 95% confidence intervals for all data-points.

6.2 base performance

We first investigate the base throughput and latency of the Granola protocol,
for single-repository transactions on a single repository, and for distributed
transactions on two repositories. Each repository runs on a single compute
core on a single machine. Replication is simulated by running the replication
protocol locally at the repository. We insert appropriate network delay to
emulate local-area and wide-area replication configurations; 0.1 ms one-way
network delay is used in the local area, and 10 ms one-way delay in the
wide area.

6.2.1 single-repository transactions

We varied the number of concurrent client threads and measured the
throughput and latency for single-repository transactions. Each client thread
issues one request at a time, with no delay between requests. Figure 6.2
plots the throughput of a single repository as a function of the number of
concurrent client threads, spread over a total of ten physical client machines.

Both configurations reach a maximum throughput of over 60,000 tps
(transactions/second) on a single compute core. More clients are required
to saturate the repository in the wide-area configuration, since the per-
transaction latency is higher and hence per-client throughput is lower.

Throughput is CPU-bound in our experiments, and benefits significantly
from higher-performance hardware. We also ran these experiments with the
repository located on a more modern 2008-vintage 2.83 GHz Core2 Quad
desktop machine, with 4 GB of RAM. We were able to consistently achieve
over 100,000 tps on a single compute core on this machine, with throughput
peaking at 140,000 tps in the local-area configuration.

We show the average per-request latency for these experiments on our
original set of machines in Figure 6.3. Total latency overhead is within 10%
of the underlying replication delay until the point where client load exceeds

93

CHAPTER 6. EVALUATION

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(t

p
s)

Clients

LAN replication
WAN replication

Figure 6.2: Single-repository throughput with increasing client load, for
both local-area and wide-area replication configurations.

total system capacity. Wide-area replication does not impose a significant
throughput or latency overhead, since our replication protocol can handle
multiple transactions in parallel.

6.2.2 distributed transactions

Figure 6.4 shows the throughput for distributed transactions on a two-
repository topology. This figure plots throughput for independent trans-
actions; coordinated transactions also exhibit the same performance when
there is no locking overhead and no conflicts.

We observe a maximum total throughput of over 20,000 transactions per
second. This value is less than that observed for single-repository trans-
actions, but a relatively small penalty for a workload comprised entirely of
distributed transactions. We examine the impact of distributed transactions
in more detail in the following sections.

We show average per-transaction latency for distributed transactions
in Figure 6.5. Distributed transactions incur only a small latency overhead

94

6.2. BASE PERFORMANCE

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

S
in

g
le

-R
e

p
o

si
to

ry
 L

a
te

n
c

y
 (

m
s)

Clients

LAN replication
WAN replication

Figure 6.3: Per-transaction latency for single-repository transactions, with
increasing client load, for both local-area and wide-area replication configu-
rations.

 0

 5000

 10000

 15000

 20000

 25000

 1 10 100 1000

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Clients

LAN replication
WAN replication

Figure 6.4: Total throughput with increasing client load for a two-repository
system with 100% independent transactions, for both local-area and wide-
area replication configurations.

95

CHAPTER 6. EVALUATION

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

D
is

tr
ib

u
te

d
 T

ra
n

sa
ct

io
n

 L
a

te
n

cy
 (

m
s)

Clients

LAN replication
WAN replication

Figure 6.5: Per-transaction latency for a two-repository system with 100%
independent transactions, with increasing client load, for both local-area
and wide-area replication configurations.

compared to single-repository transactions, and this figure closely tracks
Figure 6.3. Latency for the two types of transactions are so similar since
distributed transactions require only a single additional one-way message
delay, and the transaction participants are located on a single LAN. We
examine latency for distributed transactions in more detail in the following
sections.

6.3 scalability

We illustrate the scalability of Granola in Figure 6.6, which shows the
total system throughput with respect to the number of repositories. Clients
issue each request to a random repository, with between 0% and 10% of
requests issued as distributed two-repository independent transactions.
These figures show a local-area replication configuration. Configurations
with 10 ms one-way delay between repositories and between replicas gave

96

6.3. SCALABILITY

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1 2 3 4 5 6 7 8 9 10

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Repositories

0% distributed
1% distributed

10% distributed

Figure 6.6: Total system throughput with a varying number of repositories,
for workloads comprised of a varying fraction of independent transactions.
Each distributed transaction is issued to two repositories, with a single
master.

equivalent throughput but required significantly more clients to load the
system, due to higher request latency.

We also present these results in terms of per-repository throughput in
Figure 6.7, which shows how many transactions each individual repository
is processing for a given system size.

Throughput for single-repository transactions scales well from two repos-
itories onwards. There is a slight drop in per-repository throughput when
transitioning from one repository to multiple repositories, due to the ad-
ditional scheduling overhead and CPU load from timestamp blocking.
Blocking of a given single-repository transaction can occur if the transaction
request arrives from a client with a highTS value higher than the clock
value at the repository, in which case it may be scheduled behind subse-
quent transactions at the repository. Timestamp blocking of single-repository
transactions does not ordinarily occur in practice, since the delay between
subsequent requests from a given client is usually significantly higher than
the clock skew between repositories. In these experiments we colocate clients

97

CHAPTER 6. EVALUATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6 7 8 9 10

P
e

r-
R

e
p

o
si

to
ry

 T
h

ro
u

g
h

p
u

t
(t

p
s)

Repositories

0% distributed
1% distributed

10% distributed

Figure 6.7: Per-repository throughput with a varying number of total repos-
itories, for workloads comprised of a varying fraction of independent trans-
actions. Each distributed transaction is issued to two repositories, with a
single master.

on the same LAN as the repositories, however, hence network delay is low
compared to clock skew between repositories. Per-repository throughput
stabilizes as system size increases, as each individual machine has a lower
impact on average clock skew.

Throughput for distributed transactions also scales, but is lower than
for single-repository transactions; this is due to the additional overhead
for coordinating distributed transactions, as well as the fact that each dis-
tributed transaction involves executing an operation on two repositories
rather than just one, and also due to the potential for blocking when the
finalTS value for a transaction significantly exceeds the proposedTS value.
Distributed-transaction latency was found to be consistently twice the la-
tency of single-repository transactions due to additional communication
delay; this leads to correspondingly lower per-client throughput for dis-
tributed transactions. We examine distributed transactions in more detail in
the subsequent section.

98

6.4. DISTRIBUTED TRANSACTION TOLERANCE

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Distributed Transactions

Independent
Independent (no blocking)

Figure 6.8: Two-repository throughput in operations per second, with an
increasing proportion of distributed transactions. We examine topologies
where the two repositories are located on the same LAN, and when they
are separated by a 10 ms one-way network delay.

6.4 distributed transaction tolerance

The previous section examined throughput for 1% and 10% rates of dis-
tributed transactions. It is also interesting, however, to examine performance
with much higher rates of distributed transactions. Figure 6.8 shows the
impact on throughput of a proportion of distributed transactions, varied be-
tween 0% and 100%. We use a topology with two repositories on a local-area
configuration. This figure shows throughput for independent transactions
in timestamp mode, along with a version of the protocol that was modified
to have no timestamp blocking. This non-blocking version does not respect
timestamp dependencies and executes transactions immediately once votes
are received; the protocol thus does not provide consistency, but serves as a
point of comparison in evaluating the overhead of a Granola’s timestamp
protocol.

The units for throughput in Figure 6.8 are in operations per second,
where each distributed transaction consists of two operations, one on each

99

CHAPTER 6. EVALUATION

repository. This captures the notion that each distributed transaction entails
work on two separate repositories, and hence incurs twice the execution
cost.

An optimal coordination scheme, one that involves no execution cost,
would exhibit a constant throughput in Figure 6.8. Granola achieves lower
throughput than this optimal level, due to the additional overhead involved
in communication and processing for distributed transactions. We also
observe a 10–20% reduction in throughput due to the presence of timestamp
blocking. As discussed in the previous section, timestamp blocking is more
prevalent in our microbenchmarks than in a deployment with wide-area
delay between clients and repositories. The computational overhead of
buffering and rescheduling transactions at the repository also contributes
to a throughput reduction, since the cost of actually executing transactions
in our microbenchmarks is comparatively low. We examine the throughput
of independent transactions on a more realistic workload in Section 6.7.

6.5 locking

One of the key contributions of the Granola protocol is the ability to run
independent transactions without locking. This section evaluates the over-
head of locking, and the performance benefit from avoiding this overhead
in Granola.

Locking adds overhead in two key ways:

• The execution cost of acquiring locks and recording undo logs.

• Wasted work from having to retry transactions that abort due to lock
conflicts.

We examine both these downsides separately in the following two sec-
tions.

100

6.5. LOCKING

 0

 1000

 2000

 3000

 4000

 5000

 6000

0% 20% 40% 60% 80% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Lock Management Overhead

Granola (timestamp)
Granola (locking)

Sinfonia

Figure 6.9: Two-repository throughput for a workload comprised of 100%
distributed transactions with no lock contention, as a function of cost of
managing locks. The cost of locking is expressed as a fraction of total CPU
time to execute the transaction. We examine Granola in both timestamp
mode and locking mode, as compared to the Sinfonia protocol.

6.5.1 lock management

Figure 6.9 shows the throughput of Granola and Sinfonia on a two-repository
topology as a function of lock management cost. We examine a workload
composed entirely of distributed transactions, and run Granola in both time-
stamp mode and locking mode. This experiment measures lock overhead in
the absence of lock contention; contention is examined in the subsequent
section, and the combined effects of lock management and contention are
examined in our macrobenchmarks.

Lock management overhead represents the cost to acquire and release
locks, along with the cost of managing undo logs, and is expressed as a
percentage of the CPU load at the server application. This CPU load does
not include any processing within the repository, but rather just the cost of
the work done within the server application in response to Granola upcalls.
This experiment includes busy-work at the server application to simulate

101

CHAPTER 6. EVALUATION

transaction execution; we set the amount of work to be approximately
equal to the cost of executing a TPC-C new_order transaction, as seen in
Figure 6.17

As expected, throughput for Granola in timestamp mode is indep-
endent of lock management overhead, since no locking is used in this
mode. Throughput for both Sinfonia and Granola in locking mode drop
as lock overhead increases. Typical values for lock management cost in
online transaction processing workloads are in the vicinity of 30–40% of
total CPU load [30, 31]. At this level of lock management overhead Granola
gives 25–50% higher throughput than the lock-based protocols, even in the
absence of lock contention.

Sinfonia has slightly lower performance in this benchmark, due to the
overhead of communicating with a dedicated master to coordinate each
transaction. We deployed the Sinfonia master on a powerful machine to
avoid the single master being a CPU bottleneck; Sinfonia throughput was
20% lower when the master was run on the same class of machine as the
repositories.

6.5.2 lock contention

We investigate the impact of lock contention in Figure 6.10, on a two-
repository topology with 100% distributed transactions. We control the
lock conflict rate by having transactions modify either a private counter, or
a shared counter that conflicts with other transactions. This experiment ex-
amines lock contention in isolation, and we tailor our application such that
negligible lock management is performed, and no undo logs are recorded.

Throughput for timestamp mode is unaffected by contention, since it
does not involve locking. Throughput for both Sinfonia and Granola in lock-
ing mode deteriorate fairly rapidly at high lock conflict rates, due to fact that
each transaction must be retried multiple times before being successfully
committed (note the logarithmic x-axis in the figure). At 100% contention,
where transactions must be processed one-at-a-time, Sinfonia and Granola
in locking mode taper to under 1,000 tps; we observed a latency of approx-

102

6.5. LOCKING

 0

 5000

 10000

 15000

 20000

1% 10% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Lock Con�ict Rate

Granola (timestamp)
Granola (locking)

Sinfonia

Figure 6.10: Two-repository throughput for a workload comprised of 100%
distributed transactions, as a function of the lock contention rate. We exam-
ine Granola in both timestamp mode and locking mode, as compared to
the Sinfonia protocol.

imately 1 ms for successfully-executed transactions in this configuration,
which correlates with the overall throughput of approximately 1,000 tps
when transactions are processed serially.

The use of a single master to coordinate transactions in our Sinfonia im-
plementation ensures that each repository receives distributed transactions
in the same order. This can result in slightly higher throughput in this
benchmark, since each repository sees the same sequence of transactions,
avoiding contention due to conflicting transaction orderings. We present an
extension to use master nodes in Granola in Appendix C. In practice the
performance difference is minimal, since the presence of single-repository
transactions or transactions with other participants results in each repository
seeing a different sequence of transactions.

Sinfonia only presents a consistent transaction ordering to the repos-
itories when there is a single master node, which is not the case when
scaling to larger system sizes [10]. Unlike in our other experiments, the
single master is a bottleneck at high transaction throughput in Figure 6.10,

103

CHAPTER 6. EVALUATION

leading to lowered maximum throughput at low conflict rates. Multiple
master machines would thus be required to fully-utilize a larger topology
at high rates of distributed transactions.

6.6 transitioning between modes

Granola provides low overhead for all transaction classes, but it is optimized
specifically for independent distributed transactions. Independent trans-
actions are given special support only in timestamp mode, however; when a
repository is in locking mode, it processes all distributed transactions using
the coordinated transaction protocol. This section evaluates how much time
a repository spends in timestamp mode, and examines the cost of switching
between modes.

6.6.1 transitioning to locking mode

The transition from timestamp mode to locking mode involves acquiring
locks on all currently-active independent distributed transactions, as de-
scribed in Section 4.3.6. Locking mode cannot commence until locks have
been acquired on all such transactions, and hence may be delayed if there is
a lock conflict.

We examine the likelihood of the transition being blocked by using a
theoretical model. We define the following notation for workload-specific
parameters:

λind: The average arrival rate of independent distributed transactions at a
given repository.

Wind: The average length of time an independent distributed transaction is
active at a repository. For the transition to locking mode, the relevant
period of time is from when a repository first sends a vote for the
transaction till when all votes have been received.

Cind: The probability that two given independent transactions will conflict
on a lock, when processed using the locking mode protocol. We do

104

6.6. TRANSITIONING BETWEEN MODES

not distinguish between shared read locks and exclusive write locks
in this analysis.

From Little’s Law [40], we know that the average number of active
independent transactions at a repository at a given point of time, Lind is
given by:

Lind = λindWind

The probability that a pair transactions don’t conflict is 1− Cind, and the
probability of no conflicts for a set of n transactions is (1− Cind)

n. Hence
the probability, Bcoord, that there will be at least one lock conflict, and the
repository will have to block when transitioning to locking mode, is given
by:

Bcoord = 1− (1− Cind)
λindWind

When there are no lock conflicts the repository can enter locking mode
immediately, otherwise it must wait until it can acquire locks on the re-
maining independent transactions, or until all independent transactions are
complete. An upper-bound on the expected delay a repository will incur
from blocking, Dcoord, is thus given by:

Dcoord ≤ BcoordWind

since even the most recent active independent transaction will complete in
less than Wind time, in the absence of failures.

The probability Cind is expected to be low in practice, since a large
fraction of independent transactions are read-only, and thus only acquire
shared read locks.

Figure 6.11 plots the expected locking mode transition delay, Dcoord, as a
function of lock conflict rate. We set the processing delay for independent
transactions, Wind, to 10 ms, based on our measurements on a local-area
deployment, and vary the transaction load up to a maximal throughput of
10,000 tps.

Both axes on this figure are logarithmic. Transition delay is very low
for low conflict rates or when the independent transaction request rate is

105

CHAPTER 6. EVALUATION

 0.001

 0.01

 0.1

 1

 10

0.01% 0.1% 1% 10% 100%

T
ra

n
s
it
io

n
 D

e
la

y
 (

m
s
)

Lock Conflict Rate

 Load (tps):
100

1000
10000

Figure 6.11: Expected delay when transitioning to locking mode (Dcoord),
for a given lock conflict rate (Cind) and independent transaction load (λind).
Transaction processing time (Wind)is set to 10 ms.

low, but approaches a maximum delay of 10 ms. At this maximum value
the repository must wait for all previous independent transactions to finish
executing before transitioning.

We also examine these results for a varying network delay between
transaction participants, in Figure 6.12. The protocol for transitioning to
locking mode only includes transactions for which a vote has been sent but
the final timestamp has not yet been assigned, hence Wind is is approximated
by the one-way network delay between participants.

An increase in network delay leads to an increase in both the probability
of a lock conflict when transitioning, and also the time required to wait
when blocking on a conflict. Transition delay is nonetheless low for low
lock conflict rates, even at high network delays. At the limit all curves
approach the line Dcoord = Wind, where the repository must always wait for
the independent transactions to complete before transitioning.

106

6.6. TRANSITIONING BETWEEN MODES

 0.001

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

T
ra

n
s
it
io

n
 D

e
la

y
 (

m
s
)

One-Way Network Delay (ms)

 Conflict Rate

0.01%
0.1%

1%
10%

Figure 6.12: Expected delay when transitioning to locking mode (Dcoord),
for a given lock conflict rate (Cind). The one-way network delay between
transaction participants approximates the time an independent transaction
is active at each repository (Wind). Independent transaction load (λind) is set
at 1,000 tps.

107

CHAPTER 6. EVALUATION

6.6.2 transitioning to timestamp mode

There are two challenges involved in transitioning out of locking mode. The
first is that a transition can only occur once there are no active coordinated
transactions at the repository. The second is that even once all coordinated
transactions have completed, there may still be active independent trans-
actions that were processed using the locking mode protocol.

This section examines the likelihood that a repository is processing a
coordinated transaction at a given point in time, both theoretically and exper-
imentally. Our experiments assume that any active independent transactions
are immediately aborted and retried when transitioning to timestamp mode,
to facilitate a rapid transition, as described in Section 4.3.6. We examine
alternative mechanisms for handling independent transactions that were
processed using the locking mode protocol in Appendix B; we find that the
simple protocol presented in Section 4.3.6 is the best option.

Theoretical Model

We define our model in terms of the following parameters:

λdist: The average arrival rate of distributed transactions at the repository,
for both independent and coordinated transactions.

Wdist: The average length of time a distributed transaction is active at a
repository, for both independent and coordinated transactions. For
the transition to timestamp mode, the relevant period of time includes
the duration for which a repository holds locks for the transaction,
including the logging and voting phases.

Pcoord: The fraction of the workload that is comprised of coordinated trans-
actions.

As in Section 6.6.1, the expected number of concurrent distributed
transactions at a repository at a given point in time, Ldist, is given by Little’s
Law as:

Ldist = λdistWdist

108

6.6. TRANSITIONING BETWEEN MODES

0%

20%

40%

60%

80%

100%

0.01% 0.1% 1% 10% 100%

T
im

e
 i
n
 L

o
c
k
in

g
 M

o
d
e

Coordinated Transactions

concurrent:
1

10
100

1000

Figure 6.13: Expected time spent in locking mode at a repository (Tcoord), as
a function of the fraction of coordinated transactions (Pcoord) and number of
concurrent distributed transactions (Ldist).

The likelihood of a given transaction being independent is 1− Pcoord.
Assuming that transactions are independent and identically distributed, the
expected likelihood of there being no active coordinated transactions is
thus (1− Pcoord)

Ldist , and the likelihood, Tcoord, of there being at least one
coordinated transaction at a repository is given by:

Tcoord = 1− (1− Pcoord)
Ldist

We plot this function in Figure 6.13. We see that at high rates of con-
current distributed transactions, even a small fraction of coordinated trans-
actions can lead to a repository remaining almost permanently in locking
mode. At lower rates of concurrent transactions these results appear more
reasonable; with 100 concurrent transactions, a repository can sustain a
workload comprised of 1% coordinated transactions, while still benefiting
from being in timestamp mode for nearly half the time.

109

CHAPTER 6. EVALUATION

0%

20%

40%

60%

80%

100%

0.01% 0.1% 1% 10% 100%

Tr
a

n
sa

c
ti

o
n

s
in

 L
o

ck
in

g
 M

o
d

e

Coordinated Transactions

clients:
1

10
100

1000

Figure 6.14: Fraction of transactions processed in locking mode, for work-
loads composed of a varying fraction coordinated transactions. We examine
a varying number of concurrent client connections. 100 clients are sufficient
to fully-load the repositories in this benchmark.

Experimental Results

We further examine the time spent in locking mode in Figure 6.14, which
records a real workload on a local-area configuration. This workload is com-
prised entirely of single-repository transactions and coordinated distributed
transactions. We vary the number of simultaneous clients to alter the load
on the repositories, and hence the number of simultaneous transactions.

We also monitored throughput and latency in this benchmark. 100 clients
were sufficient to fully-load the repositories, yielding a throughput of
approximately 40,000 tps, at 2.5 ms latency for single-repository transactions
and 10 ms latency for coordinated transactions. Increasing client load to
1,000 concurrent clients did not yield a significant increase in throughput,
but triggered a 10× increase in latency as a result of the increase in queue
size. The 100-client line in this figure thus represents the optimal value for
maximum throughput at minimal latency.

Granola does not spend a significant fraction of time in timestamp mode

110

6.7. TRANSACTION PROCESSING BENCHMARK

in this experiment, when handling workloads comprised of more than 1%
coordinated transactions. Granola hence provides best performance when
operating on workloads with a particularly small proportion of coordinated
transactions. We note that the time spent in locking mode is specific to
each individual repository; if a repository never receives a coordinated
transaction, it never needs to transition to locking mode under normal
operation, even if it participates in transactions with repositories that are in
locking mode.

6.7 transaction processing benchmark

We evaluate performance on a large application using the TPC-C transaction
processing benchmark [8]. This benchmark models a large order-processing
workload, with complex queries distributed across multiple repositories.
The TPC-C schema contains 9 tables with a total of 92 columns, 8 primary
keys, and 9 foreign keys. The workload consists of 5 types of transactions
that operate on this schema, including both single-repository transactions
and distributed transactions, some of which are read-only and some of
which modify the database. Our implementation stores the TPC-C dataset
in-memory and executes transactions as single-round stored procedures.

We used the C++ implementation of TPC-C from the H-Store project [50]
for our client and server application code. As is common in research use,
this implementation does not strictly adhere to the TPC-C specification.
In particular, each client submits a subsequent transaction as soon as it
receives the final response for the previous transaction, instead of waiting
for a specified “think time”. This modification is used to drive sufficient
client load with a limited system size.

The particular TPC-C codebase that we used was designed for a single
node deployment and had no explicit support for distributed transactions.
By interposing the Granola platform between the TPC-C client and server,
we were able to build a scalable distributed database with minimal code
changes; code modifications were constrained to calling the Java client proxy
implementation from the C++ client using JNI, responding to transaction

111

CHAPTER 6. EVALUATION

requests from the repository code, and translating warehouse numbers to
repository IDs.

We adopt the data partitioning strategy proposed in H-Store [50]. This
partitioning ensures that all transactions can be expressed as either single-
repository or independent transactions. We are thus able to disable locking
and undo logging in the codebase when running the benchmark with
independent transactions.

We examine TPC-C performance for Sinfonia and for Granola, which
runs TPC-C exclusively using independent transactions. As a means of
comparison we also run Granola manually set to stay in locking mode, to
examine the performance impact of locking.

6.7.1 scalability

We examine scalability in Figure 6.15. This experiment uses a single TPC-C
warehouse per repository, and increases the number of clients to maximize
throughput. 10.7% of transactions in this benchmark are issued to multiple
repositories.

All systems exhibit the same throughput in a single-repository con-
figuration, since they all have similar overhead in the absence of locking.
Throughput drops for the lock-based protocols on multiple nodes, however.
The TPC-C implementation is highly optimized and executes transactions
efficiently, hence the lock overhead imposes a significant relative penalty;
the overhead of locking and allocating undo records in these experiments
was approximately equal to the cost of executing each operation, in line with
similar measurements on the same workload [32]. Throughput reduction is
also heavily impacted by the cost of retrying transactions that conflict on
locks. Sinfonia sees a slight performance hit compared to Granola in locking
mode, due to the additional overhead of communicating with the master.

We show the latency for distributed transactions on this benchmark
in Figure 6.16. This figure shows the average latency for transactions that
complete successfully, and does not include aborted transactions. Latency
is relatively constant with respect to system size, since it is primarily a

112

6.7. TRANSACTION PROCESSING BENCHMARK

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6 7 8 9 10

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Repositories

Granola
Granola (locking)

Sinfonia

Figure 6.15: Total system throughput on the TPC-C benchmark with an
increasing number of repositories. We examine both the Granola and Sinfo-
nia protocols, along with a version of Granola that always runs in locking
mode.

function of communication delay and execution time. Latency for Granola
in locking mode is higher than for Granola in timestamp mode, since the
repository must wait additional time for locking to be performed, and the
transaction queue at the repository is longer due to the lower throughput.
Sinfonia has approximately 60% higher latency than Granola, since the
Sinfonia protocol involves 5 message delays rather than 3 in Granola. We
don’t include a data-point for a configuration with only one repository,
since there are no distributed transactions in such a topology.

6.7.2 distributed transaction tolerance

We further examine coordination overhead by modifying TPC-C to vary
the proportion of distributed transactions [32]. We alter the workload to
be composed entirely of new_order transactions, which are the most com-
mon source of distributed transactions in the TPC-C benchmark, and the
source of most execution time. new_order transactions may be either single-

113

CHAPTER 6. EVALUATION

 0

 1

 2

 3

 4

 5

 2 3 4 5 6 7 8 9 10

D
is

tr
ib

u
te

d
 T

ra
n

sa
ct

io
n

 L
a

te
n

cy
 (

m
s)

Repositories

Granola
Granola (locking)

Sinfonia

Figure 6.16: Per-transaction latency for distributed transaction on the TPC-C
benchmark, with an increasing number of repositories. We examine both
the Granola and Sinfonia protocols, along with a version of Granola that
always runs in locking mode.

114

6.7. TRANSACTION PROCESSING BENCHMARK

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0% 20% 40% 60% 80% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Distributed Transactions

Granola
Granola (locking)

Sinfonia

Figure 6.17: Two-repository throughput on a version of the TPC-C bench-
mark that issues only new_order requests, with a variable rate of distributed
transactions. We examine both the Granola and Sinfonia protocols, along
with a version of Granola that uses only coordinated transactions.

repository or distributed. We modify the workload parameters to manually
adjust the likelihood that an item in the order will come from a remote
warehouse, hence adjusting the likelihood that a new_order transaction will
be a distributed transaction [32].

We show the throughput for our modified benchmark in Figure 6.17, for
a two warehouse configuration on two repositories, with a varying fraction
of distributed transactions.

Granola achieves better resilience to distributed transactions in this
benchmark than in our microbenchmarks, since overhead in TPC-C is domi-
nated by transaction execution costs rather than protocol effects. Throughput
for Granola in timestamp mode decreases by approximately 50% when mov-
ing from 0% to 100% distributed transactions. This represents a very low
performance penalty for distributed transactions, since each distributed
transaction involves execution on two repositories instead of one, and hence
there is a natural reduction in throughput even for optimal transaction
coordination schemes.

115

CHAPTER 6. EVALUATION

Granola achieves lower throughput when in locking mode, and scales
less optimally to a large proportion of distributed transactions. As in pre-
vious benchmarks, the lock-based protocols suffer a performance penalty
due to both lock management overhead and aborts due to lock conflicts.
Sinfonia offers lower absolute throughput than Granola in locking mode on
this benchmark, due to the additional overhead of communicating with the
master, but encounters the same relative performance penalty from locking
and conflicts.

6.7.3 latency trade-off

We finally examine the throughput/latency trade-offs for the three protocols,
for a six-repository topology running the TPC-C benchmark. We increase
client load for the three protocols, and measure the corresponding average
total throughput and the latency for distributed transactions. These results
are displayed in Figure 6.18, plotting distributed transaction latency as a
function of throughput.

These results show that the three protocols offer relatively constant
latency up until the point of maximum throughput, where congestion col-
lapse sets in. Again, Sinfonia has approximately 60% higher latency under
stable conditions, due to the additional communication phases. Latency
for Sinfonia and Granola in locking mode degrade very rapidly once max-
imum throughput is reached, leading to a reduction in throughput and
rapidly increasing latency, owing to the large number of aborted trans-
actions when the system is fully saturated. Performance for Granola in
timestamp mode degrades far more gracefully, since transactions are not
aborted, and congestion collapse simply results in additional queuing of
transactions.

We varied client load up to a total of 516 simultaneous transactions in
this experiment. At this maximum load (outside the range displayed on the
graph), Granola in timestamp mode had a latency of under 20 ms, while
maintaining a throughput very close to the maximum capacity. At this
same level of excess load, Granola in locking mode resulted in an average

116

6.7. TRANSACTION PROCESSING BENCHMARK

 0

 2

 4

 6

 8

 10

 10000 15000 20000 25000 30000 35000

D
is

tr
ib

u
te

d
 T

ra
n

sa
ct

io
n

 L
a

te
n

cy
 (

m
s)

Total Throughput (tps)

Granola
Granola (locking)

Sinfonia

Figure 6.18: Latency for distributed transactions as a function of system
throughput, showing congestion collapse for Granola, Granola in locking
mode, and Sinfonia, on a six-node topology running the TPC-C benchmark.

of 420 ms latency, and Sinfonia resulted in an of average 500 ms latency,
each with over a 50% reduction in throughput. The use of independent
transactions thus not only achieves higher throughput at lower latency, but
also avoids a collapse in performance when client load exceeds system
capacity.

117

7
E X T E N S I O N S A N D O P T I M I Z AT I O N S

The previous chapters described the core components of the Granola proto-
col. This chapter presents additional components necessary in a practical
deployment, including naming and data migration, along with extensions
and optimizations such as supporting reads at backup replicas, cache nodes,
implicit votes, and interactive transactions.

7.1 naming and reconfiguration

Granola presents the client application with the abstraction of individual
repository nodes, addressable by RID. The client proxy manages the map-
ping from each RID to the IP addresses for the repository, on behalf of
the client application, including tracking the current primary and backup
replicas for each repository. This mapping is provided by a membership
service, which tracks the membership of all repository nodes in the system.

Existing techniques for tracking system membership can be used to
implement the Granola membership service [11, 17]. We developed our own
membership management service called Census [21], which is specifically
designed to provide a consistent view of system membership, while scaling
to very large system sizes.

This section instead focuses on the mapping from application-level

119

CHAPTER 7. EXTENSIONS AND OPTIMIZATIONS

names to RIDs. This mapping is the responsibility of the application built
on top of the Granola platform. Since Granola supports general operations
and does not interpret the operations within a transaction, it cannot directly
determine which repositories are needed to run a given transaction. Granola
provides a name service, however, which stores this mapping on behalf of
the application, and allows the mapping to be changed while the system is
running, while maintaining consistency.

7.1.1 overview

The application is responsible for deciding how to divide data among the
repositories. The mapping from application-level names to RIDs could
be stored locally at each client if the schema and set of repositories did
not change. The mapping will likely change over time in a long-lived
system however, and requires a mechanism for retrieving and updating the
mapping.

Granola provides a name service that runs on a particular repository
and maps application-level names to RIDs. Each client caches a portion
of the mapping and uses it to decide which repositories are involved in a
given transaction; the client will refresh its mapping from the name service
if discovers that it is stale, or if it is missing information.

Responsibility for application-level names can be transferred between
repositories, through a process known as reconfiguration. Each configuration
of the system is identified by an epoch number, initially 0, which is incre-
mented every time a reconfiguration occurs. Epoch numbers are used to
identify the current version of the mapping, and ensure that all clients and
repositories are up to date when processing a transaction. Reconfiguration
transfers responsibility for a set of application-level names, but it does not
migrate the corresponding data. Migrating data is the responsibility of the
server application, and can be performed on-demand after reconfiguration
has taken place.

We discuss our name service and the reconfiguration protocol in more
detail in the following sections.

120

7.1. NAMING AND RECONFIGURATION

app id

64-bit OID

row idtable id

Figure 7.1: Typical object identifier format for a database application, identi-
fying the application/database, table, and row. This format is used internally
by the application, and is not interpreted by the Granola protocol.

7.1.2 naming

Granola provides 64-bit opaque identifiers to serve as application-level
names; we term these object identifiers (OIDs). The application may use this
OID space to identify individual data items and assign them to repositories
as it chooses.

An OID in the namespace could correspond to a warehouse ID in an
OLTP-style application, or an inode in a filesystem. One typical naming
scheme for a database application would be to reserve the upper bits of the
OID to identify the table name, and the lower bits to identify column or
row indices within that table; Figure 7.1 illustrates this format, including 8

reserved bits to identify the particular database or application. A scheme like
this allows the application to partition the database between repositories,
based on tables or columns/rows, while maintaining a contiguous range of
OIDs at each repository.

A given transaction may involve OIDs that map to multiple RIDs, in
which case it will be issued as a distributed transaction to these repositories.
A replicated data partition can also be represented by an OID that maps to
multiple RIDs.

7.1.3 name service

One repository in the system is denoted as the name service, and stores the
OID mappings for all other repositories. The name service has a well-known
RID, and allows clients to retrieve or update each mapping as required. The
name service may itself be partitioned over a set of repositories if necessary;

121

CHAPTER 7. EXTENSIONS AND OPTIMIZATIONS

load on the name service is typically light, however, since clients keep a
local cache of OID mappings.

The name service does not store the IP addresses of the replicas that
comprise each repository, or the identity of each primary replica, since this
is the responsibility of the membership service as described previously. This
information is retrieved by the client proxy, and is not the responsibility of
the client application.

The name service stores the mapping from OID to RIDs, for all OIDs in
the system. This mapping is implemented using range structures to avoid
storing individual entries for a large contiguous range of OIDs. The name
service also records the epoch number corresponding to the most recent
update made to the mapping.

The name service supports operations to retrieve or update the current
mapping for a set of OIDs. Clients issue a single-repository transaction
request to the name service to retrieve the latest mapping for a range
of OIDs, and are sent the latest epoch number along with this mapping.
Updates to the mapping are performed using a coordinated distributed
transaction, as described in the following section.

7.1.4 reconfiguration

Reconfiguration is used to modify the OID→RID mapping, and must exe-
cute atomically at the name service and the set of repositories where the
mapping is changing; this includes both the source and the destination for
OIDs that are migrating between repositories.

The name service increments its epoch number during every reconfigu-
ration. Each repository maintains a record of the epoch number for the most
recent reconfiguration it was involved in. Each client also has a record of
the epoch number corresponding to its current cached copy of the mapping.

The client includes its epoch number in each transaction request. If
the repository that receives this request has a higher epoch number than
was provided by the client, it rejects the request, since the client may have
issued the transaction based on a stale mapping. The client will update its

122

7.2. NON-PRIMARY READS

cached mapping by issuing a query to the name service, before retrying the
transaction. If the client observed the results of a recent reconfiguration, its
epoch number might be higher than the epoch number at the repository. The
repository can still accept such a transaction, since any reconfiguration the
repository doesn’t know about cannot involve the mapping at the repository.

A reconfiguration request specifies a set of OIDs that are moving from
the source repositories to the destination repositories, and is issued as
a coordinated transaction. When a repository receives a reconfiguration
request it goes into reconfiguration mode and will abort any subsequent
transaction using a CONFLICT response.

The repository waits to finish executing any transactions that are al-
ready in progress, before processing the reconfiguration. The source and
destination repositories will vote to commit a reconfiguration request if the
client’s epoch number is at least as high as the current epoch number at the
repository.

The name service attempts to acquire a lock on the OIDs involved
in the reconfiguration, and will abort the transaction if it is unable to
acquire the locks. If the name service can acquire these locks, it advances
its epoch number, and sends this number along with its COMMIT vote. If the
reconfiguration commits, the name service will update its mapping, as will
the source and destination repositories. The repositories can then resume
processing new transactions, at their new epoch number.

This protocol ensures that the transfer of authority for OIDs executes
atomically. It does not handle the migration of physical data between
the repositories, however. This transfer can be handled on-demand using
existing techniques for live data migration, e.g. [31].

7.2 non-primary reads

In the protocol described in Chapters 4 and 5, the primary replica handles
all communication with clients and other repositories; the backup replicas
only process log messages and execute read-write transactions. This leads
to an imbalance in server utilization, however, with the backups replicas

123

CHAPTER 7. EXTENSIONS AND OPTIMIZATIONS

being underutilized.
Our timestamp protocol allows us to shift work from the primary replica

to the backups, by executing read-only single-repository transactions at a
backup replica instead of the primary. Since we expect that workloads will
be composed predominantly of read-only single-repository transactions,
this can offload a significant fraction of work from the primary, and allow
the system to handle a far higher request load.

Each backup replica maintains a lastTS timestamp value, corresponding
to the timestamp for its most-recently executed transaction, as described in
Section 5.2.1 and illustrated in Figure 5.2. Backup replicas do not operate in
locking mode, and instead always execute in strict timestamp order. Since
the replica has executed all transactions up to lastTS, it is up-to-date with
respect to all transactions in the serial order up to this point.

The client proxy issues read-only single-repository transaction requests
to a backup replica using the same protocol as for transactions issued to the
primary. The protocol for handling a 〈Request, tid, highTS, rids, ops, ro,
indep〉 message at a backup is as follows:

1. The backup first checks that the rids set includes only this repository,
and that ro and indep are true. If not, the backup forwards the request
to the primary. This step is necessary since a client may issue a non-
read-only or distributed transaction to a backup replica if it does not
have an up-to-date record of the current primary.

2. The backup then checks if highTS≤lastTS, for highTS in the Request

and the lastTS value at the backup:

(a) If highTS≤lastTS, the backup will have executed any transaction
that may have been ahead of the client’s transaction in the serial
order, and can thus execute the client’s transaction based on
the current state at the backup. The backup executes the op

immediately by executing a run upcall, and responds to the
client with a 〈Reply, tid, rid, lastTS, status, result〉 response,
where status is COMMIT.

124

7.3. CACHES

(b) Otherwise the backup is unable to process the transaction, since
it may not be up-to-date with respect to state the client has
observed. It forwards this transaction to the primary replica. It is
also possible to instead delay the transaction locally for a short
period of time in case the backup catches up to lastTS.

The hit-rate at each backup is expected to be high, since the backups
do not lag significantly behind the primary in transaction execution. Each
backup replica executes transactions at the head of the stable log as soon
as they have a final timestamp. It is thus likely that the backup will have
executed a given transaction before the client issues a subsequent read-only
transaction to the backup.

In the protocol just described, each backup replica functions as a cache
node that supports reads in the past [46]. While this does not guarantee
freshness, the protocol nonetheless guarantees serializability for all opera-
tions, despite the fact that a transaction may execute on a state that does not
include recent transactions at the primary replica. Serializability is provided
by serializing each read-only transaction at the lastTS timestamp; since
the transaction is read-only, it can be serialized at this timestamp without
affecting subsequent transactions in the serial order.

7.3 caches

Granola allows the use of dedicated infrastructure caching nodes, which
support the execution of single-repository read-only transactions. These
nodes offload work from the repositories, and allow the system to scale
more readily for workloads that consist of a significant fraction of read-
only operations. The protocol for cache nodes operates similarly to the
non-primary read protocol just described, and also supports reads in the
past without violating serializability.

Each repository is responsible for a set of cache nodes, and each cache
node stores data for a given repository. Any node in the repository replica
group can periodically send a state update to each cache node, using

125

CHAPTER 7. EXTENSIONS AND OPTIMIZATIONS

application state diffs to minimize the amount of data that needs to be
communicated. When this cache push is performed, the replica also sends
the latest timestamp corresponding to the state. Each cache maintains a
record lastTS of this latest timestamp.

The location of cache nodes is recorded in the Granola name service, and
a client can choose to issue a read-only single-repository transaction to the
nearest cache node rather than directly to the repository. As in the previous
section, a cache will accept a transaction only if the request is read-only
and single-repository, and highTS≤lastTS, where highTS is provided in
the client Request message. If these conditions are met, the cache node
can execute the transaction based on its current state, and return a Reply

message with a timestamp value of highTS. If the conditions are not met,
the cache responds to the client with a CONFLICT response, and the client
proxy will retry the request at the repository.

Cache nodes respect serializability, since they only accept a transaction
request if the client hasn’t observed any transaction that occurred since the
last cache push, according to the global serial order.

7.4 implicit votes

The execution of an independent transaction is delayed until it has the
lowest timestamp of all concurrent transactions at the repository. We wish
to minimize the time that a transaction is delayed behind other transactions,
however, especially if these other transactions will eventually be assigned a
higher final timestamp and be serialized later in the serial order.

One common source of unnecessary delay can occur when two part-
icipants are involved together in a series of independent transactions. Con-
sider two repositories A and B, which assign proposed timestamps to a
series of concurrent transactions 1–5, as shown in Table 7.2. Repository A
will first receive a vote for transaction 1, and assign it a final timestamp
of 10. The repository is not yet able to execute this transaction, however,
since transactions 2–5 currently have proposed timestamps lower than 10.
In fact, transaction 1 will not have the lowest timestamp until it receives

126

7.4. IMPLICIT VOTES

proposedTS

Transaction Repository A Repository B

1 3 10
2 4 11
3 5 12
4 6 13
5 7 14

Table 7.2: Example of proposed timestamps for a series of independent
transactions between two participants.

votes for all transactions 2–5. In situations where there is significant clock
skew between participants and a high rate of independent transactions, this
can lead to excessive buffering of transactions awaiting execution.

We solve this problem by introducing implicit votes. If a repository al-
ways assigns proposed timestamps in a monotonically increasing order,
then a vote of timestamp 10 for transaction 1 implies that any subsequent
transaction involving that participant will have a timestamp higher than
10. When a repository receives a vote for a given transaction, it updates its
proposedTS value for all subsequent transactions involving that participant,
to be at least as high as the timestamp vote. This protocol allows a repository
to execute a complete transaction ahead of any such subsequent transaction.

Implicit votes introduce two additional requirements to the Granola
protocol:

• Each repository must assign timestamps to transactions in a monoton-
ically increasing order. This can be achieved by choosing timestamps
as the maximum value of the current clock value, the client-provided
highTS value, and the most recently assigned timestamp; this is dis-
tinct from the protocol presented previously, which chooses the max-
imum value of the current clock value, the client-provided highTS,
and the lastExecTS value at the repository.

• Each vote message must be delivered in-order. This requirement can
be met in a number of ways. We achieve in-order delivery in our

127

CHAPTER 7. EXTENSIONS AND OPTIMIZATIONS

implementation by including a sequence number on each vote from a
repository to a given participant. If an out-of-order vote is received,
the repository ceases processing implicit votes from the participant
until in-order votes have been received for all concurrent transactions
from that participant. Sequence numbers are logged in each stable
log write to provide continuity of the sequence number space despite
failures.

7.5 interactive transactions

As described in Section 2.1, Granola is designed to support a one-round
transaction model, where the client specifies all operations to be run in
a single request message. Granola can also be used to support a more
traditional interactive transaction model, however, to allow transactions that
do not fit within the one-round model.

Operations in Granola can contain arbitrary code, and thus a transaction
request can instruct the server application to acquire locks that remain
held once the one-round transaction is complete. If the server application
supports interactive transactions through the use of begin transaction

and end transaction statements, Granola’s one-round transactions can be
used to communicate these instructions to the server application.

Single-repository interactive transactions can be expressed as a series of
single-repository one-round transactions, whereas distributed interactive
transactions can be expressed as a series of single-repository or independent
transactions, followed by a coordinated transaction to determine the final
commit decision.

The exact method used to support interactive transactions depends on
the implementation of the server application, but we outline two common
approaches as follows:

Optimistic Concurrency Control Interactive transactions can be implemented
using optimistic concurrency control by using single-repository transactions
to record transaction read sets and write sets, without modifying the back-

128

7.5. INTERACTIVE TRANSACTIONS

ing data store. A coordinated transaction can then be used to check the
validity of the read and write sets, and install the writes if these sets were
not invalidated throughout the duration of the transaction. Implementing
interactive transactions via optimistic concurrency control has the advan-
tage of not requiring any additional locking throughout the duration of the
transaction, but does require the management of read sets and write sets.

Lock-based Concurrency Control Lock-based concurrency control can also be
used to implement interactive transactions as a series of single-repository
transactions, followed by a coordinated transaction to determine the commit
decision. In this case, the coordinated transaction must check that none of
the locks acquired for the transaction was discarded, and then commit or
abort the transaction accordingly.

The additional challenge when using lock-based concurrency control is
to ensure that the repository does not agree to commit a concurrent indep-
endent transaction at a given timestamp, then discover during execution
that the independent transaction conflicts with an interactive transaction.
One solution to this problem is to abort and roll back any interactive trans-
action if a concurrent one-round transaction conflicts with it; the client that
issued the interactive transaction would learn about the abort on the sub-
sequent query. The other alternative is to allow the application to instruct
the repository to remain in locking mode for the duration of an interactive
transaction, which requires minor extensions to our server API.

129

8R E L AT E D W O R K

There has been a long history of research in transactional distributed stor-
age, including an extensive literature on distributed databases [15, 24, 42].
These original systems provide a rich transaction model, including support
for interactive transactions. Granola targets a simpler transaction model,
providing one-round transactions, but can nonetheless be used to support
a wide range of online transaction processing applications [10, 32, 50, 53].
While traditional distributed databases provide a sophisticated data model,
they typically do not provide the scalability and availability guarantees
offered by Granola and other modern transaction processing systems.

We focus our discussion of related work on more recent approaches
to distributed storage, first discussing the range of consistency models
provided by modern storage infrastructures. We follow this with a more
in-depth analysis of recent work that processes distributed transactions
using a deterministic transaction ordering, and thus implements a similar
execution model to Granola.

8.1 consistency models

Brewer’s CAP Theorem [16] recently popularized the idea of the trade-off
between consistency, availability, and partition-tolerance in a distributed

131

CHAPTER 8. RELATED WORK

storage system. While this work sparked a flurry of research in storage
systems with weaker consistency guarantees, it has long been known that
strongly consistent storage systems may have to sacrifice availability under
certain failure scenarios.

Strong consistency not only poses a challenge in terms of availability,
however. Strong consistency has also traditionally been associated with two-
phase commit [28, 36] and strict two-phase locking [25], and an expectation
of inherent limits to system performance and scalability. Granola is designed
to provide strong consistency guarantees while avoiding these overheads.

We examine previous approaches to distributed storage with various
consistency guarantees in the following sections.

8.1.1 relaxed consistency

Many systems [29, 33, 47, 52] relax consistency guarantees in order to pro-
vide increased scalability and resilience to network or hardware partitions.
The growth of cloud computing has led to a resurgence in popularity of
large-scale storage systems with weaker consistency, typified by Amazon’s
eventual-consistency Dynamo [23] and many others [3–5, 7, 20]. These sys-
tems target high availability and aim to be “always writable”, but sacrifice
consistency. Applications built atop these platforms must either be tolerant
of inconsistent results and the potential loss of updates, or develop their
own consistency protocols at the application level. Both cases pose a chal-
lenge to application development, and limit the types of systems that can
be built on the platform.

Recent eventually-consistent storage systems also typically offer con-
strained transaction interfaces, such as Dynamo’s read/write distributed
hash table interface. Granola instead provides support for general opera-
tions, simplifying application development.

8.1.2 per-row consistency

Systems such as SimpleDB [2] and Bigtable [19] provide consistency within
a single row or data partition, but do not provide ACID guarantees between

132

8.1. CONSISTENCY MODELS

these entities. A significant downside to relaxed-consistency storage systems
is the complicated application semantics presented to clients and developers
when operating with multiple data items. More recent protocols such as
COPS [41] and Walter [49] attempt to simplify application development by
providing stronger consistency models: causal+ and parallel snapshot isolation
respectively. These models to not prevent consistency anomalies however,
and require the developer to reason carefully about the correctness of their
application under a given model.

8.1.3 strong consistency

Megastore [12] represents a departure from the traditional wisdom that
it’s infeasible for large-scale storage systems to provide strong consistency.
Megastore is designed to scale very widely, uses state-machine replication
for storage nodes, and offers transactional ACID guarantees. As in Sim-
pleDB [2], Megastore ordinarily provides ACID guarantees within a single
entity group, but also supports the use of standard two-phase commit to
provide strong consistency between groups. CRAQ [51] primarily targets
consistency for single-object updates, but mentions that a two-phase com-
mit protocol could be used to provide multi-object updates. Granola is
more heavily optimized for transactions that span multiple partitions, and
provides a more general operation model.

Granola is most similar in design to Sinfonia [10]. Sinfonia also supports
reliable distributed storage over large numbers of nodes, with strong con-
sistency and atomic operations over multiple storage nodes. Sinfonia also
supports a one-round transaction model, but its minitransactions express
transactions in terms of read, write and predicate sets, whereas Granola
supports arbitrary operations and does not require a priori knowledge of
locksets. Granola also provides one less message delay in the core dis-
tributed transaction coordination protocol. The most significant difference
between the two schemes is Granola’s explicit support for independent
distributed transactions, which requires no locking; this is a significant
benefit in suitable workloads, since the cost of locking is often equivalent

133

CHAPTER 8. RELATED WORK

to the cost of executing a transaction itself [30, 50]. Granola is also able to
avoid lock conflicts for independent transactions, significantly improving
throughput on workloads where lock conflicts are prevalent, such as our
TPC-C implementation.

The H-Store project [50] advocates for transaction execution models
similar to Granola, and is an inspiration for some of our work. H-Store offers
a significant performance improvement for online transaction-processing
workloads, by eschewing many of the mechanisms employed by legacy
relational database management systems. Like Granola, H-Store uses a
single thread of execution on each repository, to minimize the overhead
from locking used to support concurrent transaction execution. H-Store
also divides transactions into a number of different transaction types, and
observes that transactions in the “one-shot” and “strongly-two-phase” class
can be executed without locking. These transactions are similar to the
independent transactions provided by Granola.

H-Store does not offer a practical solution for executing distributed
transactions without locking, however: the initial H-Store paper proposed
assigning a deterministic order to transactions by stalling each distributed
transaction by the maximal expected network latency, assuming all trans-
actions arrive at all repositories within this window of time. Granola in-
troduces support for lock-free transactions regardless of network latency,
by adopting a timestamp voting and propagation protocol. Granola also
addresses important issues such as recovery from failure when executing
lock-free transactions. Later work in the H-Store project presented more
complete protocols for distributed transaction coordination, but use differ-
ent techniques and do not optimize for independent transactions [32, 55].
VoltDB [55] is a commercial database implementation based on work in H-
Store, but handles distributed transactions by pausing transaction execution
when processing a transaction that accesses data on multiple repositories
(based on personal correspondence at the time of writing).

Jones’ Dtxn system [31, 32] adds distributed transaction coordination to
the H-Store project by utilizing speculative concurrency control. This work
avoids running two-phase commit for distributed transactions by speculat-

134

8.2. DETERMINISTIC TRANSACTION ORDERING

ing that a commit vote will be received for every transaction, and rolling
back execution if the speculation was incorrect. Dtxn is able to provide
very good performance in a workload like TPC-C, where speculation usu-
ally succeeds, but encounters cascading aborts if speculation fails. Granola
avoids the need for two-phase commit votes in TPC-C altogether, by imple-
menting every distributed transaction as an independent transaction. Dtxn
requires the presence of a central coordinator node that tracks speculative
dependencies, which can limit the scale of the system to tens of nodes when
distributed transactions are common.

8.2 deterministic transaction ordering

Recent work by Thomson and Abadi on deterministic database transaction
ordering [53, 54] shares many similarities with Granola, and was developed
in parallel with our work. In their work, a coordination service assigns a
global ordering to transactions before they are received by storage repos-
itories, so that these transactions can be executed independently at the
storage nodes. This protocol uses locking for concurrency control, but
avoids two-phase commit style communication between repositories for
transactions that fit into the independent transaction model, since there is a
predetermined serial transaction order.

The authors’ original work on the subject [53] argues for the applica-
bility of a transaction model where each transaction can be executed in a
deterministic order at each storage node. This work thus supports Granola’s
transaction model, and argues for the relevance of transactions that can
execute without locking. This work also argues that a large fraction of typi-
cal online transaction processing workloads can be expressed such that the
locksets for transactions can be precomputed; this lends credence to the prac-
ticality of Granola’s protocol for recovering from long-term failures, since
the locksets for each transaction will be equivalent to the lock-supersets, as
discussed in Section 5.3.1.

The original protocol developed by Thomson and Abadi uses a single
coordinator node that determines the ordering of all transactions. Clients

135

CHAPTER 8. RELATED WORK

send all transactions to this coordinator, including single-repository trans-
actions, which poses as a serious limit to scalability. Our original work on
Granola initially explored the use of a coordinator hierarchy to determine
transaction ordering, while using timestamps so that single-repository trans-
actions didn’t need to be sent to a coordinator. We opted instead for our
distributed timestamp voting protocol, to support higher scalability.

The Calvin protocol [54] avoids some of the bottlenecks of a centralized
coordinator, by splitting the coordinator across all storage nodes, as a set of
transaction sequencers. Each transaction is issued to a sequencer or set of se-
quencers, and all sequencers execute a round of all-to-all communication to
determine a global transaction ordering, before forwarding the transactions
on to the storage layer. Calvin must delay transactions and order them in
batches, to minimize the overhead of this all-to-all communication. This
allows Calvin to scale beyond a hundred nodes, but introduces additional
transaction latency, which was a design choice we avoided in Granola. Gra-
nola instead uses a fully-distributed mechanism for transaction ordering,
and requires no communication between nodes that are not participants in
the same transaction, removing this scalability bottleneck.

Single-repository writes need to be communicated to the sequencer
layer in Calvin, along with distributed transactions, whereas Granola only
requires multi-party transaction coordination for distributed transactions.
Read-only single-repository transactions are issued directly to the storage
nodes in Calvin, bypassing the sequencer layer. This means that the protocol
does not provide causality for read operations: a read from a given client
may observe the effects of transaction T, but then a subsequent read may
observe a pre-state of transaction T at another participant. This anomaly
could be rectified by incorporating timestamps and propagating timestamp
ordering dependencies in client transactions, as required in Granola.

Calvin uses a lock-based execution model, and can thus support concur-
rent execution on multiple compute cores, and provide efficient support for
disk-based workloads. Calvin is tailored explicitly towards database trans-
actions, whereas Granola targets a more general application model. Granola
and Calvin optimize for different points in the design space, with Granola

136

8.2. DETERMINISTIC TRANSACTION ORDERING

aiming for lower latency and potentially wider scalability, but each offer
compelling advantages for distributed transaction processing workloads.

137

9
C O N C L U S I O N S A N D F U T U R E W O R K

There is an extensive history of research on distributed transaction coordi-
nation, as discussed in Section 8. This thesis presents a new contribution to
this large body of work, by specifically targeting the new class of independent
distributed transactions. Granola thus represents not only an interesting pro-
tocol and architecture for running distributed transactions, but also raises a
number of opportunities for future research.

9.1 future work

We briefly discuss some possible areas for future work, both in terms of
extending the Granola platform, and in further exploring the transaction
model.

9.1.1 protocol improvements

Although the base Granola protocol was already designed for high perfor-
mance and low transaction coordination overhead, there is still potential for
further optimizations.

139

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Avoiding Blocking

The protocol for processing transactions in timestamp mode may result in
blocking if the transaction with the lowest timestamp has not yet received a
full set of votes. Our solution to this problem is to transition into locking
mode if the repository is blocked for an extended period of time. Less
heavyweight options are also possible, however, such as acquiring locks
just for the blocked transaction and pushing any subsequent transaction
past it if they don’t conflict with the locks. It may also be advantageous to
opportunistically abort read-only transactions that are taking a long time to
complete, to avoid slowing down subsequent transactions in the queue.

If blocking occurs as the result of a particular participant being slow, it is
also possible for the repository to assign higher timestamps to transactions
involving that participant. The higher timestamps would position these
transactions further back in the timestamp queue, and allow other trans-
actions to execute while the repository is waiting for the slow participant.
We originally adopted an adaptive timestamp protocol along these lines,
but found that it wasn’t necessary to achieve good performance in our
benchmarks.

A full examination of strategies like these could make the Granola
protocol more resilient to slow participants and asymmetric workloads.

Parallel Execution

We adopted a single-threaded execution model for server applications,
to avoid the overhead and complexity of concurrency control within the
application. This choice was partially motivated by arguments presented
in the H-Store project [50], but subsequent work has since advocated for
a multi-threaded execution model to take advantage of multiple compute
cores and disk-based workloads [53, 54].

Granola could be trivially extended to support multi-threaded execution
in locking mode, since locks already provide isolation between transactions.
Multi-threaded execution in timestamp mode would require the application
to determine which transactions can be executed in parallel. The application

140

9.1. FUTURE WORK

would need to acquire locks for parallel transactions, but only for the
duration of a run upcall. Similar techniques are adopted in the Calvin
protocol [54].

9.1.2 transaction models

Granola presents a specific transaction model for application developers.
This section addresses techniques for expanding on this transaction model,
and converting existing transactions to fit our model.

Converting Coordinated Transactions to Independent Transactions

Granola provides its best performance when operating in timestamp mode,
where only single-repository transactions and independent distributed trans-
actions are supported. Some distributed transactions are more obviously
modeled as coordinated distributed transactions, however, such as a bank
transfer that only proceeds if the source account has sufficient funds.

It is possible to convert many coordinated transactions into independent
transactions. One way to do this is to partition the data such that the commit
decision can be determined independently by each participant; we use this
strategy in our TPC-C implementation, by replicating the Item table at
every repository. Schism [22] automatically determines a partitioning and
replication strategy based on analysis of a database schema and workload,
and aims to minimize the proportion of distributed transactions. Schism
does not optimize for independent transactions, however, and does not
preference independent transactions over coordinated transactions.

Another way to convert a coordinated transaction into an independent
transaction is through the use of escrow transactions [44]. An escrow trans-
action could be used for a bank transfer by first running a single-repository
transaction that takes funds out of the source account and places them in
an escrow account, followed by an independent transaction that atomically
transfers the funds. Additional management is required to track the escrow
balance, and to notify the participants if the transfer needs to be aborted
due to the client failing before completing the transfer. There is also the

141

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

additional overhead of executing the transfer as two transactions instead of
one.

Other techniques such as demarcation [13] can be used under many work-
loads to convert coordinated transactions into single-repository transactions.
A full study of all such techniques, as applied to typical online transaction
processing workloads, would serve as a valuable contribution and argue
further for the relevance of Granola’s transaction model.

Automatic Transaction Classes

Granola expects the application developer to determine which transaction
class to use for each transaction; this information is communicated to the
client proxy when a transaction is invoked. It would be far more desir-
able, however, to automatically determine the transaction class for a given
transaction.

Granola currently cannot determine transaction classes itself, since it
treats the operation in each transaction as an uninterpreted byte string,
in order to support arbitrary applications. It may be possible, however, to
automatically infer the transaction class for transactions that have a well-
defined syntax and partitioning strategy, such as the use of SQL queries
and a database schema. The Houdini system [45] uses machine learning to
predict what repositories are going to be involved in a given transaction,
but precisely determining the transaction class for a given transaction is
still an open question.

Exchanging Data in Votes

Granola’s one-round transaction model requires that transaction participants
execute operations entirely in isolation, apart from a commit/abort vote for
coordinated transactions. We could extend our model further by allowing
arbitrary data to be exchanged along with the vote for the transaction. It
may also be possible to exchange this data in lieu of a commit/abort vote,
and have the application at each participant independently determine the
commit decision based on the data exchanged in the vote messages.

142

9.1. FUTURE WORK

One key constraint is that the data exchanged in vote messages cannot
affect the locks required by the transaction, since the locks must be acquired
at each participant before the votes are sent. The main open question thus
pertains to the relevance of exchanging data in typical online transaction
processing workloads, given this locking constraint.

9.1.3 dynamic reconfiguration

Granola provides mechanisms for migrating data between repositories, and
for mapping logical data partitions to the repositories that are responsible
for this data. We also provide a mechanism for tracking and updating
system membership, by way of the Census membership management sys-
tem [21]. It would be highly desirable in a real-world deployment, however,
to automatically manage this system configuration in response to load.

Desirable features in a dynamic management system include:

• Automatically splitting or merging partitions in response to client
load.

• Adding additional replicated partitions to handle read-heavy work-
loads.

• Migrating data to machines close to the users accessing that data.

• Migrating repositories to nearby machines if they are frequently in-
volved in distributed transactions together.

• Locating primary replicas in a single data-center to minimize voting
latency.

• Colocating witnesses and backups on particular machines to improve
utilization while maintaining failure independence [56].

A configuration management system that supports some of the features
above would be a valuable contribution for distributed storage systems in
general, not just for Granola.

143

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.2 summary of contributions

This thesis has presented Granola, an infrastructure for building distributed
transactional storage applications. Granola provides strong consistency
for all operations, and supports atomic distributed transactions, while
maintaining high throughput, low latency, and wide scalability. Granola thus
presents an argument against the conventional wisdom that it’s infeasible
to provide strong consistency in a high-performance distributed storage
system.

Granola’s protocol design and lack of dedicated transaction coordinators
allows it to provide low per-transaction latency. Granola is able to execute
single-repository transactions in one network round-trip from the client
plus a stable log write, and to execute distributed transactions in only three
one-way message delays and one stable log write, including the round-
trip from the client. This latency is significantly lower than traditional
approaches to distributed transaction coordination, and compares favorably
with existing storage systems that do not provide strong consistency or
distributed transactions.

One of Granola’s main contributions is its use of timestamps to sup-
port independent distributed transactions, a new class of transaction where
the commit decision can be computed independently by each transaction
participant. Granola is able to provide serializability for independent trans-
actions without locking or two-phase commit. This can significantly reduce
transaction coordination overhead, and allows each repository to coordi-
nate many independent transactions in parallel, without encountering a
reduction in throughput due to lock conflicts and retries.

Granola’s timestamp-based coordination protocol is entirely distributed,
and does not require the presence of a centralized coordinator or coordina-
tion layer; each distributed transaction only involves the repositories that
are participants for that transaction. This allows us to avoid the scalabil-
ity bottlenecks inherent in centralized coordination systems, and also to
minimize the number of communication phases for a given transaction.

Independent transactions occur commonly in online transaction pro-

144

9.2. SUMMARY OF CONTRIBUTIONS

cessing workloads, and we were able to implement the TPC-C transaction
processing benchmark using only single-repository transactions and indep-
endent distributed transactions. Our experiments show that the use of indep-
endent transactions can result in a significant improvement in throughput
compared to existing mechanisms, as well as a reduction in per-transaction
latency.

145

AM E S S A G E S

This chapter lists the message formats used in Granola, showing what infor-
mation needs to be communicated in an implementation of the protocol.

a.1 message formats

The contents of each message are defined as follows.

a.1.1 request

Request tid ts rids ops ro indep

tid: The TID assigned to the transaction. This is composed of the unique
client ID and unique transaction sequence number.

ts: The highest timestamp observed so far at the client.

rids: The IDs for the set of repositories that are involved in the transaction.

ops: The byte-string operations to be sent to each repository in rids. If
only one operation is provided, it is sent to all repositories in rids.

147

APPENDIX A. MESSAGES

ro: [optional] Whether the transaction is read-only. This flag is only relevant
for single-repository transactions or independent transactions.

indep: [optional] Whether the transaction is independent. This flag is only
relevant for distributed transactions (where length(rids) > 1).

a.1.2 vote

Vote tid rid ts status retry

tid: The TID for the transaction.

rid: The ID of the repository sending the vote.

ts: The proposed timestamp for the transaction.

status: Set to COMMIT if voting to commit the transaction, CONFLICT if
aborting due to a lock conflict, or ABORT if aborting due to application
logic.

retry: [optional] This flag is set if the repository is resending this vote to
trigger a retransmission response, since it has not yet received a vote
from the recipient.

a.1.3 reply

Reply tid rid ts status result

tid: The TID for the transaction.

rid: The ID of the repository responding.

ts: The final timestamp assigned to the transaction.

148

A.2. PROTOCOL BUFFERS DEFINITIONS

status: Set to COMMIT if the transaction committed, CONFLICT if the trans-
action aborted due to a lock conflict and should be retried, or ABORT if
it aborted due to application logic.

result: [optional] The transaction result, if one is given by the application.
Results may also be included for ABORT responses.

a.2 protocol buffers definitions

A Protocol Buffers [9] definition file for these messages is provided as
follows in Figure A.1.

149

APPENDIX A. MESSAGES

/*
* Datatypes for use in other messages

*/

message TID {
required uint32 cid = 1;
required uint32 seqno = 2;

}

message Addr {
required string host = 1;
required uint32 port = 2;

}

enum Status {
STATUS = 1; // commit vote or result
CONFLICT = 2; // abort due to lock conflict
ABORT = 3; // abort due to application logic

}

Figure A.1: Basic message definitions in Protocol Buffers format.

Continued on next page.

150

A.2. PROTOCOL BUFFERS DEFINITIONS

/*
* Messages

*/

message Req {
required TID tid = 1;
required uint64 ts = 2;
optional Addr caddr = 3;
repeated uint32 rids = 4 [packed = true];
repeated bytes requests = 5;
optional bool ro = 6 [default = false];
optional bool indep = 7 [default = true];

}

message Vote {
required TID tid = 1;
required uint32 rid = 3;
required uint64 ts = 4;
required Status status = 5;
// whether this vote is a retry
// if so, the the receiver should send one back
optional bool retry = 6 [default = false];

}

message Rep {
required TID tid = 1;
required uint32 rid = 2;
required uint64 ts = 3;
required Status status = 4;
optional bytes result = 5;

}

Figure A.1: Basic message definitions in Protocol Buffers format.

Continued from previous page.

151

B
R E L E A S I N G L O C K S F O R

I N D E P E N D E N T T R A N S A C T I O N S

Granola was designed to operate primarily in timestamp mode, and this
mode is where the protocol achieves best performance. Section 6.6.2 evalu-
ates how often a repository will be operating in timestamp mode, given the
likelihood that a repository will be processing no coordinated transactions
at a given point in time. These results assumed, however, that a repository
can switch back into timestamp mode immediately once it has completed
execution of any coordinated transactions. Whether the repository can ac-
tually switch immediately depends on how we deal with locks that were
acquired for current independent transactions.

In practice independent distributed transactions will likely be received
while in locking mode, and these transactions will be processed using
the locking mode protocol, i.e., these transactions will undergo a prepare
phase, and the application will acquire locks for them. These locks need
to be released before the repository can switch to timestamp mode; this
is performed in our default implementation by issuing an abort applica-
tion upcall for each independent transaction, then later re-executing each
transaction with a run upcall, following the timestamp mode protocol. This
chapter examines alternative approaches to releasing these locks, to try to

153

APPENDIX B. RELEASING LOCKS FOR INDEPENDENT TRANSACTIONS

avoid the overhead of extraneous abort upcalls.

Figures B.1 and B.2 examine the fraction of time spent in locking mode,
and the total system throughput, for three different protocols for transition-
ing from locking mode to timestamp mode:

Stay Coord.: The repository remains in locking mode until there are no
active independent transactions, and won’t switch back until this point.
Any new independent transaction that arrives during this period will
also be processed in locking mode.

Undo Immediate: The repository immediately issues abort upcalls for all
active independent transactions, to undo any changes and release
their locks. These transactions can then be completed using the time-
stamp mode protocol. This is the default policy used in our Granola
implementation.

Undo On-Demand: The repository starts accepting new transactions in
timestamp mode, but does not immediately abort any independent
transactions that were processed in locking mode. If a new transaction
conflicts with one of the existing locks when executed using a run

upcall, then the transaction that triggered the lock conflict will be
aborted and re-run using the timestamp mode protocol.

These benchmarks include real transaction work and locking overhead
to accurately represent the costs of the three protocols; locking overhead
is set to 50% of the transaction execution cost. In each figure we run the
system at maximum throughput, on a two-repository topology, and vary
the fraction of the workload that is comprised of independent distributed
transactions.

These experiments aim to examine the impact of a given fraction of
independent transactions. Each experiment includes a constant 0.05% rate
of coordinated transactions, to trigger each repository to switch in and
out of locking mode. The remainder of the workload is made up of single-
repository transactions and independent transactions. We vary the fraction

154

0%

20%

40%

60%

80%

100%

0.01% 0.1% 1% 10% 100%

Tr
an

sa
ct

io
ns

 in
 L

oc
ki

ng
 M

od
e

Independent Transactions

Stay Coord.
Undo Immediate

Undo On-Demand

Figure B.1: The number of transactions processed in locking mode at a
given repository, for the three different transition protocols, as a function of
fraction of the total workload that’s composed of independent transactions.
Coordinated transactions comprise a fixed 0.05% of the workload.

155

APPENDIX B. RELEASING LOCKS FOR INDEPENDENT TRANSACTIONS

 0

 2000

 4000

 6000

 8000

 10000

0.01% 0.1% 1% 10% 100%

To
ta

l T
hr

ou
gh

pu
t (

tp
s)

Independent Transactions

Stay Coord.
Undo Immediate

Undo On-Demand

Figure B.2: Two-repository throughput for the three different transition
protocols, as a function of fraction of the total workload that’s composed of
independent transactions. Coordinated transactions comprise a fixed 0.05%
of the workload. Locking overhead is set at 50% of the transaction execution
cost.

of independent transactions between 0% and 99.95%, with a corresponding
fraction of single-repository transactions between 99.95% and 0%.

Figure B.1 shows the fraction of time spent in locking mode, for a given
workload distribution. We see that Stay Coord. is as effective as the Undo
protocols at transitioning into timestamp mode at low rates of independent
transactions. At high rates, however, subsequent coordinated transactions
arrive before all previous independent transactions have completed, pre-
venting the repository from successfully transitioning into timestamp mode.
The curves for Undo Immediate and Undo On-Demand taper off at high rates
of independent transactions since the maximum throughput decreases, and
hence the number of concurrent active transactions also decreases. Note
that the x-axis in this figure extends to 99.95%, not 100%, due to the 0.05%
of the workload that is composed of coordinated transactions.

Figure B.2 shows the total system throughput for the three protocols.
The throughput drops off as the fraction of independent transactions in-

156

creases, since the repositories are processing a larger number of distributed
transactions. We only observe a minor throughput difference between the
Undo Immediate and Undo On-Demand protocols. This is because transitions
between timestamp mode and locking mode are more rare at high rates
of independent transactions, and thus the relative overhead of undoing
transactions is low. Since the performance difference is small, we adopt the
simpler Undo Immediate protocol in our default implementation.

Stay Coord. performs less well than the Undo protocols in terms of
throughput, but also incurs 20% higher transaction latency due to the more
frequent use of locking mode. There are no lock conflicts in this specific
benchmark: if lock conflicts are introduced, the throughput of Stay Coord.
drops. Undo Immediate and Undo On-Demand have even closer performance
at higher rates of lock conflict, since there is less benefit from deferring
transaction undo.

157

CM A S T E R N O D E S

Our original design for Granola included a layer of dedicated master nodes
that were responsible for ordering all distributed transactions. Master nodes
did not determine the final serial order of transactions, but rather just
the order in which each repository received each transaction; the serial
order was determined by the timestamp voting protocol, as in our current
protocol. Masters ensured that all participants received transactions in the
same relative order, and hence all participants would issue a prepare upcall
for coordinated transactions in the same order. This deterministic ordering
eliminated the possibility of deadlock, and allowed us to block transactions
that encountered a lock conflict, rather than aborting them.

We determined through our experimental evaluation that it was better
to abort transactions that conflict on a lock, rather than result in head-
of-line blocking as in the original protocol. Aborts result in additional
transaction delay and message communication cost, but they provide a
degree of independence between transactions — in the blocking protocol a
long chain of distributed transactions could end up being delayed due to a
single transaction that conflicts on a lock. This delay is also propagated to
other participants, since it results in vote messages being delayed.

Once we opted to abort conflicting transactions rather than block them,
the master nodes no longer provided a significant performance benefit.

159

APPENDIX C. MASTER NODES

Clients

Repositories

Masters

Figure C.1: Granola system topology when using master nodes.

They also added complexity and latency to the transaction coordination
protocol, hence we removed them from the core Granola protocol. We
outline our master-based protocol in this chapter, and discuss some of the
minor performance benefits from using master nodes to assist in transaction
coordination.

c.1 protocol overview

Master nodes are arranged into a hierarchy as shown in Figure C.1. Each
client issues a distributed transaction to the lowest master in common with
all transaction participants. The master then forwards the transaction down
the tree to the participants. When a repository receives a transaction from
its parent, it processes it using the standard Granola protocol.

The hierarchy allows the system to scale and support multiple masters,
while ensuring that a single master is responsible for the ordering of trans-
actions issued to any given set of participants. The master hierarchy scales
well if the system is able to be partitioned such that distributed transactions
typically involve repositories that are nearby in the hierarchy, in which case

160

C.2. DOWNSIDES OF MASTERS

the majority of transactions will be issued to a lowest-level master. The
hierarchy works less well, however, if the system does not exhibit locality,
and a significant fraction of distributed transactions end up being issued to
the root of the hierarchy.

Master do not need to record a stable log write when receiving a trans-
action. Masters are entirely soft-state, except for a generation number that
is incremented every time the master recovers from failure. The generation
number can be stored using a replicated state machine at each master, or by
using a single management service that stores the generation numbers for
all masters and replaces a master in the case of failure.

Since masters do not keep a stable record of the transactions that they
forward, a master might resend a set of transactions in a different order
after recovering from failure. The generation number ensures a consistent
ordering at the repositories: a vote for a transaction at a newer generation
number supersedes a vote for an older generation number, and any trans-
action committed at the previous generation number will retain its old
ordering.

The protocol at the masters is very lightweight, and hence each master
can support a large number of children in the hierarchy. We were able to
support many tens of repositories under a single master with high rates
of distributed transactions. Hundreds of repositories could be supported
under a single master at lower distributed transaction rates.

c.2 downsides of masters

The main downside of the use of masters is the additional complexity it
introduces to the protocol, both in terms of the protocol design and in
the administrative overhead of running the system. Masters also introduce
additional points of potential failure.

The use of masters requires at least one additional one-way message
delay for distributed transactions, and potentially more message delays if a
transaction is issued to a master higher up in the hierarchy. This additional
latency is particularly undesirable since low latency was a major goal in

161

APPENDIX C. MASTER NODES

Granola’s design.

Masters also introduce an additional assumption regarding the trans-
action workload: that the workload exhibits sufficient locality that the
majority of transactions will be issued to a lowest-level master. This as-
sumption introduces an additional constraint to our transaction model for
deployments intended to scale beyond a single master.

c.3 performance benefits

Masters were deemed to be of insufficient performance benefit once we
changed the Granola protocol to abort conflicting transactions rather than
blocking them. Masters still retain one benefit, however, which is providing
each repository with transactions in a consistent order. In the absence
of masters, one repository might receive a pair of transactions in one
order, while another repository receives them in the reverse order. This
does not pose a correctness issue, since the use of timestamps defines a
consistent transaction order, but it can lead to reduced throughput in our
two transaction modes:

Timestamp Mode: A transaction T that arrives at two participants at sig-
nificantly different times will be queued at the participant that first
received T. If the first participant assigned a low proposed timestamp
to T, this can result in the execution of subsequent transactions being
blocked until the vote for T arrives.

Locking Mode: If a pair of transactions T1 and T2 both conflict on the same
locks, and arrive at two participants in the same order, then T1 will
commit and T2 will be aborted. If they arrive at the participants in
opposite orders, however, then both T1 and T2 may abort.

We examine the performance impact of transactions arriving in different
orders in the following sections, for our two transaction modes.

162

C.3. PERFORMANCE BENEFITS

Master

Repos Repos

Clients Clients

Bifurcation (ms)

Figure C.2: Bifurcated network topology used when evaluating the per-
formance benefit of using masters. The repositories are located a given
network delay apart, and half of the clients are colocated with each reposi-
tory. The master is located mid-way between the repositories when using
the master-based protocol.

Timestamp Blocking in Timestamp Mode

We examine the impact of a skew in transaction arrival times by using a
bifurcated topology, as illustrated in Figure C.2. We split the system into
two halves, with half of the clients colocated with one repository, and half
colocated with the other repository. The two clusters are separated by a
one-way network delay that we refer to as the bifurcation, varied between
0 and over 30 ms. Each client issues a workload comprised entirely of
independent distributed transactions, to both repositories. This represents a
worst-case scenario, where every transaction arrives at one participant x ms
earlier than the other, for a given bifurcation value x.

We examine the Granola protocol both with and without masters. The
master is located mid-way between the two repositories, such that trans-
actions are received at approximately the same time at both participants
when using masters.

Figure C.3 shows the total throughput for two repositories for a given
bifurcation value. Throughput drops for protocols as the bifurcation in-
creases, since the additional network delay leads to a reduction in per-client

163

APPENDIX C. MASTER NODES

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Bifurcation (ms)

Masters
No Masters

Figure C.3: The impact on throughput by avoiding timestamp blocking in a
master-based protocol, for a bifurcated network topology with workload
comprised of 100% independent transactions on two repositories. The repos-
itories are separated by the bifurcation delay (one-way network delay), and
half the clients are colocated with each repository. The master is located
mid-way between the two repositories.

throughput, and each repository has to buffer a much larger number of
transactions while awaiting votes. At 0 ms bifurcation there is minimal
benefit from using masters, since transactions already arrive at each par-
ticipant at roughly the same time. At higher bifurcation levels there is a
larger difference in throughput, but the advantage from using masters is
still minimal.

Excess Aborts in Locking Mode

We use the same topology as in the previous section to evaluate the impact
of aborts due to lock conflicts. We set bifurcation at 10 ms, and use a client
workload comprised entirely of coordinated distributed transactions. We
then vary the fraction of transactions that attempt to acquire a lock on a
common shared field, and thus potentially encounter a lock conflict.

Figure C.4 shows the throughput on our two-repository topology with

164

C.3. PERFORMANCE BENEFITS

 0

 2000

 4000

 6000

 8000

 10000

0.1% 1% 10% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Lock Con�ict Rate

Masters
No Masters

Figure C.4: The impact on throughput by avoiding transaction aborts in a
master-based protocol, for a bifurcated network topology with workload
comprised of 100% coordinated transactions on two repositories. The reposi-
tories are separated by 10 ms one-way bifurcation delay, and half the clients
are colocated with each repository. The master is located mid-way between
the two repositories.

a lock conflict rate varied between between 0.1% and 100%. At low levels
of lock conflicts, masters provide a visible benefit, since slightly fewer
transactions abort for each lock conflict. At higher conflict rates, however,
this advantage diminishes. This is because multiple transactions tend to
conflict simultaneously, and we no longer gain a significant benefit from
having the first transaction in a chain of conflicts commit without aborting.

We observed only a very minor benefit from the use of masters on more
realistic workloads, where there are many repositories and transactions
involve different sets of participants. Each repository acts as a participant for
different transactions, and hence encounters different lock conflicts. Under
these circumstances there is far less benefit from receiving transactions in a
consistent order when in locking mode.

165

B I B L I O G R A P H Y

[1] Distributed TP: The XA Specification. Number C193. The Open Group,
February 1992.

[2] Amazon SimpleDB. http://aws.amazon.com/simpledb/, 2007.

[3] Apache Cassandra. http://cassandra.apache.org, 2008.

[4] Apache CouchDB. http://couchdb.apache.org, 2008.

[5] Apache HBase. http://hbase.apache.org, 2008.

[6] Shore - A High-Performance, Scalable, Persistent Object Repository.
http://research.cs.wisc.edu/shore/, 2008.

[7] MongoDB. http://www.mongodb.com, 2009.

[8] TPC benchmark C. Technical report, Transaction Processing Perfor-
mance Council, February 2010. Revision 5.11.

[9] Google Protocol Buffers. http://code.google.com/p/protobuf/,
2012.

[10] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Alistair C.
Veitch, and Christos T. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM Transactions on Computer
Systems (TOCS), 27(3), November 2009.

[11] Yair Amir and Jonathan Stanton. The Spread wide area group com-
munication system. Technical Report CNDS-98-4, The Johns Hopkins
University, Baltimore, MD, USA, 1998.

167

http://aws.amazon.com/simpledb/
http://cassandra.apache.org
http://couchdb.apache.org
http://hbase.apache.org
http://research.cs.wisc.edu/shore/
http://www.mongodb.com
http://code.google.com/p/protobuf/

BIBLIOGRAPHY

[12] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,
James Larson, Jean Michel Léon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. Megastore: Providing scalable, highly available storage
for interactive services. In Fifth Biennial Conference on Innovative Data
Systems Research (CIDR), Asilomar, CA, USA, January 2011.

[13] Daniel Barbará and Hector Garcia-Molina. The demarcation protocol: A
technique for maintaining constraints in distributed database systems.
The VLDB Journal, 3(3), June 1994.

[14] Philip A. Bernstein and Nathan Goodman. Serializability theory for
replicated databases. Journal of Computer and System Sciences (JCSS),
31(3), December 1985.

[15] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping Bubba, a highly
parallel database system. IEEE Transactions on Knowledge and Data
Engineering, 2(1), March 1990.

[16] Eric A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the Nineteenth Annual ACM symposium on Principles of
Distributed Computing (PODC), Portland, OR, United States, July 2000.

[17] Mike Burrows. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, USA, November
2006.

[18] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Transactions on Computer Systems (TOCS),
20(4), November 2002.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for structured
data. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Seattle, WA, USA, November 2006.

168

BIBLIOGRAPHY

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment, 1(2), August 2008.

[21] James Cowling, Dan R. K. Ports, Barbara Liskov, Raluca Ada Popa, and
Abhijeet Gaikwad. Census: location-aware membership management
for large-scale distributed systems. In Proceedings of the 2009 USENIX
Annual Technical Conference, San Diego, CA, USA, June 2009.

[22] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden.
Schism: a workload-driven approach to database replication and parti-
tioning. Proceedings of the VLDB Endowment, 3(1), September 2010.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP), Stevenson, WA, USA, October
2007.

[24] David DeWitt, Shahram Ghandeharizadeh, Donovan Schneider, Allan
Bricker, Hui l Hsiao, and Rick Rasmussen. The Gamma database
machine project. IEEE Transactions on Knowledge and Data Engineering,
2(1), March 1990.

[25] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. Communications
of the ACM, 19(11), November 1976.

[26] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), Bolton Landing, NY, USA, October 2003.

[27] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2), June 2002.

169

BIBLIOGRAPHY

[28] J. N. Gray. Notes on database operating systems. In Operating Systems:
An Advanced Course, number 60 in Lecture Notes in Computer Science.
Springer-Verlag, 1978.

[29] R. Guy, J. Heidemann, W. Mak, Jr. Page, T., G. Popek, and D. Roth-
neier. Implementation of the Ficus replicated file system. In USENIX
Conference Proceedings, Anaheim, CA, USA, June 1990.

[30] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael
Stonebraker. OLTP through the looking glass, and what we found
there. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Vancouver, Canada, June 2008.

[31] Evan P. C. Jones. Fault-Tolerant Distributed Transactions for Partitioned
OLTP Databases. PhD thesis in Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, USA,
2012.

[32] Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. Low overhead
concurrency control for partitioned main memory databases. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, June 2010.

[33] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High
Availability Using Lazy Replication. ACM Transactions on Computer
Systems (TOCS), 10(2), November 1992.

[34] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM (CACM), 21(7), July 1978.

[35] L. Lamport. The Part-Time Parliament. Technical Report Research
Report 49, Digital Equipment Corporation Systems Research Center,
Palo Alto, CA, USA, September 1989.

[36] B. Lampson. Atomic transactions. In Distributed Systems: Architecture
and Implementation, volume 105 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1981.

170

BIBLIOGRAPHY

[37] K.-J. Lin. Consistency issues in real-time database systems. In Pro-
ceedings of the Twenty-Second Annual Hawaii International Conference on
System Sciences, volume 2, January 1989.

[38] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and
M. Williams. Replication in the Harp File System. In Proceedings
of the 13th ACM Symposium on Operating Systems Principles (SOSP),
Pacific Grove, CA, USA, October 1991.

[39] Barbara Liskov and James Cowling. Viewstamped Replication revisited.
Technical report, MIT CSAIL, 2012.

[40] John D. C. Little. A proof for the queuing formula: L= λW. Operations
Research, 9(3), 1961.

[41] Wyatt Lloyd, Michael J. Freedmand, Michael Kaminsky, and David G.
Andersen. Don’t settle for eventual: Scalable causal consistency for
wide-area storage with COPS. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, October 2011.

[42] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in
the R* distributed database management system. ACM Transactions on
Database Systems (TODS), 11(4), December 1986.

[43] B. Oki and B. Liskov. Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems. In Proceed-
ings of the Seventh Annual ACM symposium on Principles of Distributed
Computing (PODC), Toronto, ON, Canada, August 1988.

[44] Patrick E. O’Neil. The Escrow transactional method. ACM Transactions
on Database Systems (TODS), 11(4), December 1986.

[45] Andrew Pavlo, Evan P.C. Jones, and Stanley Zdonik. On predictive
modeling for optimizing transaction execution in parallel OLTP sys-
tems. Proceedings of the VLDB Endowment, 5(2), October 2011.

171

BIBLIOGRAPHY

[46] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and
Barbara Liskov. Transactional consistency and automatic management
in an application data cache. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Vancouver,
BC, Canada, October 2010.

[47] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, David, and C. Steere. Coda: A highly available
file system for a distributed workstation environment. IEEE Transactions
on Computers, 39(4), April 1990.

[48] F. B. Schneider. The state machine approach: A Tutorial. Technical
Report TR 86-600, Cornell University, Dept. of Computer Science,
Ithaca, NY, USA, December 1986.

[49] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Trans-
actional storage for geo-replicated systems. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), Cascais, Portu-
gal, October 2011.

[50] Michael Stonebraker, Samuel R. Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The end of an architectural
era (it’s time for a complete rewrite). In Proceedings of the 33rd Inter-
national Conference on Very Large Databases (VLDB), Vienna, Austria,
September 2007.

[51] Jeff Terrace and Michael J. Freedman. Object storage on CRAQ: high-
throughput chain replication for read-mostly workloads. In Proceedings
of the 2009 USENIX Annual Technical Conference, San Diego, CA, USA,
June 2009.

[52] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
and Mike J. Spreitzer. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP), Copper Mountain
Resort, CO, USA, December 1995.

172

BIBLIOGRAPHY

[53] Alexander Thomson and Daniel J. Abadi. The case for determinism in
database systems. Proceedings of the VLDB Endowment, 3(1), September
2010.

[54] Alexander Thomson, Thaddeus Diamond, Shu chun Weng, Philip Shao,
Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Scottsdale, AZ,
USA, May 2012.

[55] VoltDB Inc. VoltDB. http://voltdb.com.

[56] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy,
and Emmanuel Cecchet. ZZ and the art of practical BFT execution.
In Proceedings of the Sixth European Conference on Computer systems (Eu-
roSys), Salzburg, Austria, April 2011.

173

http://voltdb.com

