
Granola: Low-Overhead Distributed Transaction Coordination

James Cowling
MIT CSAIL

Barbara Liskov
MIT CSAIL

Abstract
This paper presents Granola, a transaction coordination
infrastructure for building reliable distributed storage ap-
plications. Granola provides a strong consistency model,
while significantly reducing transaction coordination over-
head. We introduce specific support for a new type of
independent distributed transaction, which we can serial-
ize with no locking overhead and no aborts due to write
conflicts. Granola uses a novel timestamp-based coordina-
tion mechanism to order distributed transactions, offering
lower latency and higher throughput than previous systems
that offer strong consistency.

Our experiments show that Granola has low overhead,
is scalable and has high throughput. We implemented
the TPC-C benchmark on Granola, and achieved 3× the
throughput of a platform using a locking approach.

1 Introduction

Online storage systems run at very large scale and typically
partition their state among many nodes to provide fast
access and sufficient storage space. These systems need to
provide persistence, availability, and good performance.

It is also highly desirable to run operations as atomic
transactions, since this greatly simplifies the reasoning
that application developers must do. Transactions allow
users to ignore concurrency, since all operations appear
to run sequentially in some serial order. Most distributed
storage systems do not provide serializable transactions,
however, because of concerns about performance and par-
tition tolerance. Instead, they provide weaker semantics,
e.g., eventual consistency [14] or causality [26].

This paper presents Granola, an infrastructure for build-
ing distributed storage applications where data resides
at multiple storage repositories. Granola supports atomic
transactions, and provides serializability across all oper-
ations. Granola also provides persistence and high avail-
ability, along with low per-transaction overhead.

Granola provides transaction ordering, atomicity and
reliability on behalf of storage applications that run on the
platform. Applications specify their own operations, and
Granola does not interpret operation semantics. Granola
can thus be used to support a wide variety of storage sys-
tems, such as databases and object stores. Granola imple-
ments atomic one-round transactions. These execute in one
round of communication between a user and the storage
system, and are used extensively in online transaction pro-
cessing workloads to avoid the cost of user stalls [7,20,32].

Granola supports three classes of one-round transac-
tions. Single-repository transactions execute on a single
storage node; we expect that most transactions will be
in this class, since data is likely to be well-partitioned.
Coordinated distributed transactions execute atomically
across multiple storage nodes, and commit only if all par-
ticipants vote to commit; these transactions are what is
provided by traditional two-phase commit. We also sup-
port a new transaction class, which we term independent
distributed transactions. These execute atomically across
a set of nodes, but do not require agreement, since each
participant will independently come to the same commit
decision. Examples include an operation to give everyone
a raise, an atomic update of a replicated table, or a read-
only query that obtains a snapshot of distributed tables.

Granola uses a timestamp-based coordination mecha-
nism to provide serializability for single-repository and
independent transactions without locking, using clients to
propagate timestamp ordering constraints between repos-
itories. This provides a substantial reduction in overhead
from locking, log management and aborts, and a con-
sequent improvement in throughput. Granola provides
this lock-free coordination protocol while handling single-
repository and independent transactions, and adopts a lock-
based protocol when handling coordinated transactions.
Granola’s throughput is similar to existing state-of-the-art
approaches when operating under the locking protocol, but
significantly higher when it is not.

Granola provides low latency for all transaction types:

we run single-repository transactions with two one-way
message delays plus a stable log write, and both types of
distributed transactions usually run with only three mes-
sages delays plus a stable log write. This is a significant im-
provement on traditional two-phase commit mechanisms,
which require at least two stable log writes, and improves
even on modern systems such as Sinfonia [7], which re-
quires at least four one-way message delays (for a remote
client) and one stable log write.

Our experiments show that we can provide 3× greater
throughput on the TPC-C benchmark compared to using a
locking approach.

2 Transaction Model

Granola supports one-round transactions, which are ex-
pressed in a single round of communication between the
client and a set of repositories; we refer to the set of repos-
itories as transaction participants. The client application
specifies what operations to execute and Granola ensures
that these are executed atomically at all participants.

One-round transactions are distinct from general data-
base transactions in two key ways: One-round transactions
do not allow for interaction with the client, where the
client executes multiple sub-statements (e.g., queries) be-
fore issuing a transaction commit; transactions are instead
specified as a single operation that executes atomically
at each participant. One round transactions also execute
to completion at each participant, with no communica-
tion with other repositories, apart from at most a single
commit/abort vote. Despite these restrictions, one-round
transactions are still a powerful primitive. They are used
extensively in online transaction processing workloads to
avoid the cost of user stalls [7, 20, 32], and map closely to
the use of stored procedures in a relational DBMS.

2.1 Why Independent Transactions?
As mentioned, Granola supports three types of one-round
transactions: single-repository, coordinated, and indep-
endent transactions; this last category is a primary con-
tribution of the Granola protocol.

Coordinated transactions incur significant cost for lock-
ing and undo-logging; previous studies have estimated
overhead to be 30–40% of CPU load under typical work-
loads [18]. These also incur overhead when retrying trans-
actions that block or abort due to contention [7]. Our
motivation for independent transactions was to explore
the most powerful primitive we could provide without in-
curring this overhead. Independent transactions execute
atomically across a set of participants, but do not require
locking or undo-logging, and do not contend with other
transactions. This provides us a significant performance
advantage, as seen in Section 6.2.

Clients

Repositories

Replicas

Figure 1: System topology.

Our approach was influenced by the H-Store
project [32], which identified a large class of operations in
real-world applications, deemed as one-shot and strongly
two-phase, that fit our independent transaction model. This
work did not provide a functional protocol for coordinat-
ing independent transactions in a distributed setting [19],
however. To our knowledge, no previous system provides
explicit support for independent transactions.

Independent transactions are appropriate for distributed
operations where all participants will make the same lo-
cal decision whether to commit or abort. This includes
distributed read-only transactions, common in read-heavy
workloads when data spans multiple partitions, or transac-
tions where the commit decision is a deterministic function
of shared data. Application developers commonly replicate
tables when partitioning data, to ensure that the majority
of transactions are issued to a single partition [20, 32];
independent transactions can be used to atomically up-
date replicated data, or to execute distributed transactions
predicated on replicated data.

The common TPC-C benchmark [6], designed to be
representative of a typical online transaction processing
workload, can be partitioned so that operations consist
entirely of single-repository transactions and independent
transactions [32]. For example, new order transactions
only abort if a request contains an invalid item number,
which can be computed locally if the Item table is repli-
cated at each participant. Modifications to the Item table
could also be performed using independent transactions.

3 Architecture and Assumptions

This section describes our architecture and application
interface. It also discusses our assumptions.

3.1 Architecture
Granola contains two types of nodes: clients and repos-
itories. Repositories are the server machines that store
data and execute transactions, while clients interact with
the repositories to issue transaction requests. Repositories
communicate with one another to coordinate transactions,

ClientProxy

User Code

Repository

Server Application
(extends GranolaApplication)

Client Application

Figure 2: Logical structure.

whereas clients typically interact only with the repositories.
This topology is illustrated in Figure 1. Each repository
is comprised of a number of replica nodes, to provide
reliability; we discuss replication in Section 5.1.

Applications link against the Granola library, which pro-
vides functionality for correctly ordering transactions and
delivering them reliably to each server application. Appli-
cations are layered atop the Granola client and repository
code, as shown in Figure 2.

3.2 Client Organization
The client application code is provided by the application
developer, and supports the desired interface to user code,
e.g., support for queries in a database system. The client
application is responsible for determining which reposi-
tories are required for a given user request, and choosing
which transaction class to use.

The application issues transactions by interacting with
the Granola client proxy, using the interface shown in Fig-
ure 3.1 The application specifies the repository ID (RID)
for each participant, the operation to run at each partici-
pant, and whether the transaction is read-only. The client
proxy interacts with the Granola repository code at the
participants, and handles all other client-side functionality,
including providing a TID (transaction identifier) for each
request. The TID uniquely identifies each request, and con-
sists of the client ID and a sequence number that increases
for each request from that client. The client proxy also
manages timestamps, which are used to ensure serializ-
ability as discussed in Section 4.

3.3 Server Organization
The Granola repository code prepares and executes
transactions by making upcalls to the server appli-
cation. The server application must implement the
GranolaApplication interface shown in Figure 4. Ap-
plication upcalls supply the transaction operation and re-
trieve a result, both of which are uninterpreted by Granola.
The server application runs in isolation at each repository,
and does not need to communicate directly with other
repositories, since this functionality is provided by the

1While we show a blocking interface for the client proxy, the user
can issue multiple requests concurrently; Granola determines the relative
ordering of concurrent transactions.

// issue trans to given repository

// writes result into provided buffer

void invokeSingle(int rid, ByteBuffer op,
boolean ro, ByteBuffer result);

// issue trans to set of repositories

void invokeIndep(List<Integer> rids,
List<ByteBuffer > ops, boolean ro,
List<ByteBuffer > results);

// issue trans to set of repositories

// returns application commit/abort status

boolean invokeCoord(List<Integer> rids,
List<ByteBuffer > ops,

List<ByteBuffer > results);

Figure 3: Client API.

Granola repository code. We discuss the use of the server
API in Section 4, and the recovery interface in Section 5.4.

3.4 Assumptions

For the purposes of this paper, we assume that the set
of repositories is fixed and well-known; system recon-
figuration is outlined in our extended description of the
protocol [13], along with other protocol details.

While each repository can process many transactions in
parallel, each application upcall is executed sequentially,
saving considerable overhead over the cost of latching
and concurrency control [32]. This approach works well
assuming in-memory workloads, as is common in most
large-scale transaction processing applications [32]. Mul-
tiple repositories may be colocated on a single machine to
take advantage of multicore systems.

Granola tolerates crash failures. Our replication proto-
col depends on replicas having loosely synchronized clock
rates [25]. We depend on repositories having loosely syn-
chronized clocks for performance, but not correctness.

4 Protocol Design

This section describes the Granola protocol. We first dis-
cuss the timestamps used to provide serializability, fol-
lowed by our protocols for the three transaction classes.

Each repository runs in one of two modes. When there
are no coordinated transactions running at a repository it
runs in timestamp mode. Sections 4.3 and 4.4 describe our
protocols for single-repository and distributed transactions
as they work in timestamp mode. When the repository
receives a request for a coordinated transaction it switches
to locking mode. Section 4.5 describes how the system
runs in this mode and how it transitions between modes.

The repository interacts with the server application dif-
ferently in the two different transaction modes. In time-

Independent Interface
// executes transaction to completion.

// returns false if lock conflict

boolean run(ByteBuffer op, ByteBuffer result);

Coordinated Interface
// runs to commit point and acquires locks.

// returns COMMIT/ABORT vote or CONFLICT

// result is empty unless returning ABORT

AbortType prepare(ByteBuffer op, long tid,
ByteBuffer result);

// commits trans and releases locks

void commit(long tid, ByteBuffer result);

// aborts trans and releases locks

void abort(long tid);

Recovery Interface
// force-acquires any locks that could be

// required at any point in the serial order

// returns true if no conflict

boolean forcePrepare(ByteBuffer request,
long tid);

Figure 4: Server API.

stamp mode, all transactions are executed using the run
upcall, which executes the transaction to completion. The
prepare upcall is used for distributed transactions when
in locking mode, to acquire locks on the transaction and
determine the commit or abort vote. The response to the
prepare upcall can indicate COMMIT, ABORT, or CON-
FLICT. COMMIT indicates that the application has acquired
the locks needed by the request while CONFLICT means
that some locks cannot be acquired and therefore the client
should retry the transaction. ABORT means that the appli-
cation has decided to abort the transaction based on appli-
cation logic, e.g., the application refuses to decrement an
account balance because the balance is too small. If the
application returns ABORT it can also include additional in-
formation for the client in the result buffer. The ABORT
response occurs only for coordinated transaction requests.

In the following description we note where a stable log
write is required. This step involves the primary replica
executing state machine replication, as described in Sec-
tion 5.1. Unless specified, no other replication occurs and
communication is solely between the primary replicas at
each repository.

4.1 Timestamps
Granola uses timestamps to order distributed transactions
without locking. Each transaction is assigned a timestamp,
which defines its position in the global serial order. A
transaction is ordered before any transaction with a larger
timestamp; if two transactions have the same timestamp,
the transaction with the lower TID is ordered first.

time

Reply

Request

Client Repository

run

log write

Figure 5: Timeline for single-repository transactions.

Repositories select the timestamp for each transaction
based on their clock. Repositories exchange timestamps
before committing a given transaction, to ensure that they
all assign it the same timestamp. Each transaction result
sent to the client contains the timestamp for that trans-
action, and each request from the client contains the latest
timestamp observed by the client, ensuring that timestamp
dependencies are maintained. We explain how timestamps
are used in the following sections.

4.2 Client Protocol
The client proxy receives transaction invocation requests
from the client application via the interface specified in
Figure 3. Each client proxy maintains highTS, the highest
timestamp it has observed in a transaction response, ini-
tially 0. The client proxy issues a transaction REQUEST to
the repositories specified by the client application, along
with the highTS value and the TID.

The client proxy then waits for REPLY messages from
the participants. If it receives COMMITs from all partic-
ipants, it returns the results to the client application. If
the proxy receives an ABORT response from some repos-
itory, it returns false; if it receives a CONFLICT response,
it retries the transaction with a new TID, after waiting a
random backoff.

4.3 Single-Repository Transactions
The basic protocol for single-repository transactions has
much in common with how existing single-node storage
systems work. The protocol timeline is shown in Figure 5.

The protocol for read-write transactions is as follows:

1. When a repository receives a client REQUEST it as-
signs it a timestamp that is greater than the highTS
sent by the client, the timestamp of the most recently
executed transaction at the repository, and the current
clock value.

2. The repository performs a stable log write to record
both the request and the assigned timestamp, so that
this information will persist across failures.

3. The transaction is now ready to be executed. Trans-
actions are executed in timestamp order, by making

Request

Client Repository Repository

Reply

Vote

run run

log write log write

time

Figure 6: Timeline for independent transactions.

a run upcall to the application. Once a transaction
is executed, a COMMIT reply containing the result of
the upcall is sent to the client.

Additional transactions can be processed while awaiting
completion of a stable log write; these requests will be
executed in timestamp order.

The protocol for read-only transactions is the same as
for read-write transactions, except that a stable log write
is not required in Step 2 of the protocol. Since read-only
transactions do not modify the service state, they can be
retried in the case of failure.

4.4 Independent Distributed Transactions
Independent transactions are ordered with respect to all
other transactions without locking or conflicts. Granola
achieves this by executing each independent transaction at
the same timestamp at all transaction participants. We de-
termine the timestamp by using a distributed voting mech-
anism. Each participant nominates a proposed timestamp
for the transaction, the participants exchange these nomi-
nations in VOTE messages, and the transaction is assigned
the highest timestamp from among these votes.

The protocol for transactions that modify data is as
follows; the timeline is shown in Figure 6.

1. The repository selects a proposed timestamp for the
transaction that is higher than highTS (sent by the
client), the timestamp of the most recently executed
transaction at the repository, and the current clock
value.

2. The transaction request and timestamp proposal are
recorded using a stable log write.

3. The repository sends a COMMIT VOTE message con-
taining the proposed timestamp to the other partici-
pants. The repository can process other transactions
after the vote has been sent.

4. The repository waits for votes from other participants.
If it receives a CONFLICT vote, it ceases processing
the transaction and sends this response to the client. A

time

Reply

Vote

Request

Client Repository Repository

commit commit

log write log write

prepare prepare

Figure 7: Timeline for coordinated transactions.

conflict vote will be received only from a participant
that is operating in locking mode, as described in the
next section.

5. Once the repository receives commit responses from
all other participants, it assigns the transaction the
highest timestamp from the votes; this timestamp will
be consistent across all participants. The transaction
is now ready to be executed.

6. The transaction is executed at the assigned timestamp,
in timestamp order, and a reply is sent to the client.

The protocol for read-only transactions is similar, except
that the stable log write is not required. Since these trans-
actions do not modify the service state, the client proxy
can retry a read-only transaction if a participant fails while
executing the protocol.

As mentioned, the repository can process other transac-
tions while waiting for votes. In all cases we, guarantee se-
rializability by executing in timestamp order. A transaction
won’t be executed until after any concurrent transaction
with a lower timestamp at the repository. It is thus possible
for execution of a transaction to be delayed if a transaction
with a lower timestamp has not yet received a full set of
votes. Longer-term delays can occur if a transaction par-
ticipant has failed; recovery from a failed participant is
discussed in Section 5.4.

4.5 Coordinated Distributed Transactions
We now describe the protocol used for coordinated transac-
tions, and the impact on single-repository and independent
transactions when in locking mode. Coordinated transac-
tions require participants to agree whether to commit or
abort. They require locking to support concurrency; other-
wise, one transaction might modify state that was used by
a concurrent transaction to determine its vote.

The protocol for coordinated transactions is as follows;
the timeline is shown in Figure 7.

1. Coordinated transactions first undergo a prepare
phase. This is accomplished by issuing a prepare

upcall to the application. The application acquires
any locks required by the transaction, and returns its
vote, holding the locks only if it decides to commit.

2. The repository selects a timestamp for the transaction
that is greater than highTS, the timestamp of the last
executed transaction and the current clock value.

3. The transaction request, vote, and proposed time-
stamp are recorded using a stable log write.

4. The repository sends its VOTE along with the pro-
posed timestamp. If the vote is ABORT or CONFLICT,
it immediately returns this result to the client, and
ceases processing the transaction.

5. The repository waits for votes from other participants.
If it receives an ABORT or CONFLICT vote it makes an
abort upcall to the application which releases locks
and reverts any changes, sends the ABORT or CON-
FLICT REPLY to the client, then ceases processing
the transaction.

6. Once the repository has received COMMIT votes from
all other participants, it assigns the transaction the
highest timestamp from the votes, and immediately
executes the transaction by issuing a commit upcall
to the application. The application releases any locks,
and returns the transaction result. The repository can
then send a COMMIT REPLY to the client.

Locking Mode. The protocol for single-repository and
independent transactions is different in locking mode.
Independent transactions are processed using the coord-
inated transaction protocol with prepare and commit
upcalls. The client proxy will retry an independent trans-
action if it receives a CONFLICT response; it will never
receive an ABORT response for an independent transaction.

We avoid holding locks for single-repository transac-
tions by attempting to execute them as soon as they have
been assigned a timestamp, but before the transaction is
logged, by using a run upcall. The application checks
locks for a run upcall if issued concurrently with other
distributed transactions. If the run upcall is successful,
the repository issues a stable log write to record the time-
stamp for the transaction before responding to the client.
If there is a lock conflict, the application returns false,
and the repository responds to the client with a CONFLICT
response then discards the transaction. No log write is
required for the aborted transaction.

The protocol for read-only single-repository transac-
tions is the same, except that the stable log write is not
required. The response to the client must be buffered until
the most recent stable log write is complete, to avoid ex-
ternalizing the effects of any previous transaction that has

not yet been logged. We discuss the recovery implications
of executing a transaction before logging in Section 5.2.

Switching Modes. There may be single-repository and
independent transactions in progress when a coordinated
transaction arrives while the repository is in timestamp
mode. We handle this situation by issuing prepare up-
calls for the independent transactions, and following the
locking protocol. If all prepares succeed, we go on to pro-
cess the coordinated transaction; otherwise, we block the
coordinated transaction and remain in timestamp mode
until all earlier prepares succeed.

It is desirable to switch back to timestamp mode as soon
as possible, to avoid the cost of locking. Once all coord-
inated transactions have completed, the repository issues
an abort upcall for any current independent transactions.
This releases their locks, and allows the repository to tran-
sition into timestamp mode. The independent transactions
will be executed using run upcalls in timestamp order,
once their final timestamps are known.

4.6 Consistency
Granola provides serializability for transactions. In time-
stamp mode our consistency model is straightforward:
Timestamps define a total ordering of transactions, guaran-
teeing serializability; all participants observe a transaction
to execute at a single common timestamp. Clients prop-
agate timestamps between repositories, to ensure that a
transaction is not assigned a timestamp lower than any
transaction that may have preceded it. Locking is not re-
quired when in timestamp mode, since each transaction
executes serially with a single application upcall at each
participant.

Granola allows each repository to execute its part of an
independent transaction without knowing what is happen-
ing at the other participants: it only knows that they will
ultimately select the same timestamp. This means that it is
possible for a client to observe the effect of a distributed
transaction T at one repository before another participant
has executed it. Since any subsequent request from the
client will carry a highTS value at least as high as T , how-
ever, we can guarantee that this request will be delayed if
necessary and execute after T at any participant.

Locks are required when handling coordinated trans-
actions, to ensure that a transaction does not observe or
invalidate the state used to determine the commit or abort
vote for a concurrent transaction. Repositories may exe-
cute transactions out of timestamp order when in locking
mode, since locking is sufficient to guarantee serializabil-
ity [16]. Timestamps thus may not represent the commit
order of transactions, but still represent a valid serial order,
since any transactions that execute out of timestamp order
are guaranteed not to conflict.

Our transaction protocol does not provide external con-
sistency [23], meaning that consistency is not guaranteed
when communication occurs outside the system. Granola
relies on clients including their highTS value on each re-
quest, which will not be included on out-of-band commu-
nication. External consistency can be provided for client-
to-client communication if these messages include the
highTS value of the sender. While violations of external
consistency are possible for communication that occurs
completely outside the system, such violations are unlikely
since they are only possible within a small window of time,
proportional to the clock skew between repositories [13].

5 Failures and Recovery

This section discusses the mechanisms used to handle indi-
vidual node failures. We also discuss what happens when
problems such as a network partition cause repositories to
become unresponsive for an extended period of time.

5.1 Replication

Granola requires that stable log writes remain durable, and
that repositories recover quickly from failure. We accom-
plish this using state machine replication [30]; while disk
writes could have been used for durability, they do not
provide fast recovery from failure. Our replication proto-
col uses an improved version of Viewstamped Replica-
tion [24, 28]; Paxos [22] provides an equivalent consensus
protocol and could also have been used.

Repositories are replicated using a set of 2 f +1 replicas
to survive f crash failures. One replica is designated the
primary, and carries out the Granola protocol. Backup
replicas carry out a view change to select a new primary if
the old one appears to have failed.

Stable log writes involve the primary sending the log
message to the backups and waiting for f replies, at which
point the log is stable. The primary does not stall while
waiting for replies; it continues processing incoming re-
quests in the meantime. The replication protocol uses
batching of groups of log messages [10] to reduce the
number of messages sent to backups.

Each log message records the request, proposed time-
stamp and vote for each transaction. The primary piggy-
backs the final timestamp assigned to each transaction on
subsequent log messages, to facilitate pruning the log at
the backups. The backups execute transactions in time-
stamp order once the final timestamp is known.

Our protocol does not require disk writes as part of
the stable log write, since we assume that replicas are
failure-independent. Information is written to disk in the
background, e.g., as required by main memory limitations.
Failure-independence can be achieved by locating replicas

in disjoint locations, or by equipping them with battery-
backed RAM.

5.2 Repository Recovery

This section discusses issues that arise due to failovers.

• When a failover occurs, it’s possible that the old pri-
mary does not know it has been superseded. This can
be a problem for read-only single-repository trans-
actions since they may observe stale data if run at
the old primary. We avoid this problem by using the
leases mechanism introduced in Harp [25], which
guarantees there is only ever a single primary.

• The new primary might not know about recent read-
only independent transactions for which the old pri-
mary sent votes. The new primary may thus receive
such a request and select a different timestamp, and
as a result the client proxy may receive replies with
different timestamps. In this case the client proxy dis-
cards the replies and reissues the transaction with a
higher TID.

• The new primary will know all votes sent by the pre-
vious primary for distributed read/write transactions,
but may not know the final timestamp assigned to
some recently completed transactions. The new pri-
mary recovers this information by resending its votes
to solicit votes it is missing.

• In locking mode, the new primary may execute trans-
actions in a different order than the old primary since
the execution order in locking mode depends on the
order in which votes are received. Both the old and
new primaries will only execute transactions in an
order consistent with the timestamp order, however,
and hence will not deviate in the serial ordering.

• In locking mode, single-repository transactions are
executed before being logged and externalized, and
thus may not persist into the new view. In this case
the previous execution of the transaction is forgotten.
When the old primary recovers, it must undo the ex-
ecution of any such transactions; this can be accom-
plished by reverting to a checkpoint and replaying
transactions from the log.

5.3 Client Recovery

Clients can ensure uniqueness of sequence numbers
(which comprise TIDs) by writing periodic sequence num-
ber ranges to disk, and only using sequence numbers
within each range. Alternatively, a client can recover its
timestamp after failure by synchronizing its clock and

ensuring that a period of time equal to the maximum ex-
pected clock skew has elapsed. After this it can adopt its
clock value as its new latest-observed timestamp, which
will be at least as high as the timestamp it knew before
it failed. Note that here we are depending on synchro-
nized clocks for correctness, where otherwise we have not
needed this assumption.

If there are no explicit consistency constraints between
client sessions, the client proxy can instead set its latest-
observed timestamp to 0 when recovering from failure.

5.4 Long-term Failures
Since Granola provides strong consistency, we may have
to stall because of failure. Replication masks the failure
of individual nodes, but cannot provide availability if an
entire replica group becomes unavailable. Permanent loss
of a replicated repository may result in data loss and will
likely require human intervention. This section describes
how the rest of the system can make progress after failure
of a replicated repository, in particular the situation where
a non-failed repository is unable to obtain votes from a
failed or unresponsive participant.

When a repository notices that a participant is unrespon-
sive, it first attempts to resolve the transaction by resending
its votes to any other participants; these participants will
respond with the transaction status if they completed the
transaction. If this is unsuccessful after a timeout, however,
we proceed as follows.

Locking Mode. The repository needs to hold locks for
incomplete distributed transactions that are awaiting votes
from the failed participant until the participant recovers;
subsequent transactions will be sent a CONFLICT REPLY if
they conflict with these locks. The repository periodically
resends each vote, and will commit or abort an incomplete
transaction if notified by another participant that knows
the transaction outcome.

Timestamp Mode. Recovery is more complicated if the
repository is in timestamp mode, since it will not have
acquired locks for the incomplete transactions, and must
thus execute transactions in timestamp order. This results
in a set of blocked distributed transactions, for which the
repository has a full set of votes, but cannot yet execute
because they are queued behind an incomplete transaction
that currently has a lower timestamp based on votes so far.
Single-repository transactions and read-only independent
transactions are not included in these sets, since they can
be sent a CONFLICT REPLY without causing repository
state to diverge.

The repository first attempts to transition into locking
mode by issuing a prepare upcall for each blocked trans-
action, in the current timestamp order, stopping if there

is a lock conflict. If the prepare is successful for an in-
complete transaction, the repository will continue holding
the locks. If the prepare is successful for a blocked trans-
action, the repository executes it immediately by issuing
a commit upcall, responds to the client, and removes it
from the queue; this is safe because any request later in the
queue will end up with a later timestamp and run after it,
and this request doesn’t conflict with any requests earlier
in the queue.

If the repository is able to prepare all transactions with-
out any lock conflicts, then it transitions into locking mode
and follows the locking mode recovery protocol above. If
it finds a conflict, however, it must cease preparing the
remaining transactions. In the absence of conflicts, the
repository can acquire locks for transactions in any order,
since none of the transactions interfere, but if there is a
lock conflict, the locks acquired for a transaction may de-
pend on the order in which it is run. For example, consider
a transaction that reads a stock level from one database
table, then updates one of two different tuples depending
on whether or not the stock is above a certain level; in
this case the lockset depends on the relative ordering of
transactions that modify the level.

We acquire locks in an order-independent way by re-
quiring applications to implement a forcePrepare up-
call. This function acquires locks the transaction might
acquire in any execution order. In our stock level exam-
ple, the application would acquire locks on both tuples,
regardless of the stock level. For many applications, trans-
actions are already order-independent, and this superset is
the same as the set of locks acquired by a regular prepare
upcall, particularly for transactions that update fields that
are known ahead of time [7]. In other applications it might
involve escalating lock granularity, e.g., from tuple-level
locks to sets of locks or even to table locks.

The forcePrepare upcall acquires all locks even if
there is a lock conflict, to allow the repository to accumu-
late locks for all blocked and incomplete transactions.

The repository iterates through the incomplete and
blocked transactions (excluding blocked transactions that
were completed while performing the prepare upcalls)
and issues forcePrepare upcalls for them in the current
timestamp order. The upcall returns true if there is no lock
conflict; in the case of a blocked transaction this means it
does not conflict with any transaction possibly ahead of it
in the final serial order, and the repository can execute it,
thus releasing its locks, and respond to the client.

Once locks have been acquired for all blocked and in-
complete transactions, the repository can transition into
locking mode and resume accepting new transactions.

6 Evaluation

We implemented Granola in Java, and deployed it on 10
2005-vintage 3.2 GHz Xeon servers with 2 GB RAM,
with a cluster of 10 more powerful 2.5 GHz Core2 Quad
servers with 4 GB RAM to provide client load. These
machines were connected by a gigabit LAN with a network
latency of ∼ 0.2 ms. Multiple clients are colocated on a
given machine to fully load the repositories, and wide-area
network delay is emulated by delaying outgoing packets
in our network library. Replication is emulated by running
the protocol locally with appropriate network delay. We
use this platform to examine Granola’s scalability, latency,
and resistance to lock conflicts and overhead.

We compare Granola’s performance against the trans-
action coordination protocol from Sinfonia [7], which uses
a more traditional lock-based version of two-phase com-
mit. We use this coordination protocol by having clients is-
sue single-repository transactions to the repositories (mem-
ory nodes) and issue distributed transactions to a single
coordinator (application node). We used a single high-
powered 16-core 1.6 GHz Xeon server with 8 GB RAM to
serve as the coordinator, to avoid aborts due to contention
from multiple masters.

Our implementation of Sinfonia differs in that we don’t
require clients to explicitly provide the read/write lock-
sets for a transaction, and instead allow general operations
through the use of prepare and commit upcalls. While
we refer to this implementation as Sinfonia in our bench-
marks, it could be used to represent any similarly-efficient
implementation of two-phase commit. No locking is per-
formed for single-repository transactions when running in
isolation; the implementation must check whether a single-
repository transaction conflicts with any active locks when
running concurrently with distributed transactions.

We first examine the performance characteristics of Gra-
nola on a set of microbenchmarks, followed by an evalua-
tion on a more complex transaction processing benchmark.
Our figures show 95% confidence intervals for all data-
points.

6.1 Micro-benchmarks

Our micro-benchmarks examine a counter service. Each
update modifies either a counter on a single repository, or
counters distributed across multiple repositories. We vary
the conflict rate for coordinated transactions by adjusting
the ratio of conflicting updates issued by a client. Since
the protocol for read-only operations is similar to many
other distributed storage systems, these benchmarks focus
exclusively on read/write transactions.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1 2 3 4 5 6 7 8 9 10

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Repositories

0% distributed
1% distributed

10% distributed

Figure 8: Throughput scalability.

6.1.1 Base Performance

We measured a maximum throughput of approximately
50,000 tps (transactions/sec) with a per-transaction latency
of under 1 ms, increasing to 65,000 tps with under 10 ms
latency, for single-repository transactions on a single com-
pute core. Throughput was CPU-bound, and we observed
more than twice this throughput on a more powerful ma-
chine. We also examined a wide-area configuration with
approximately 10 ms emulated one-way delay between
replicas, which resulted in similar throughput and a base-
line per-transaction latency of approximately 22 ms. Wide-
area replication did not impose a throughput penalty de-
spite additional per-request latency, since our replication
protocol can handle transactions in parallel.

6.1.2 Scalability

We illustrate Granola’s scalability in Figure 8. Clients is-
sue each request to a random repository, with between
0 and 10% of requests issued as distributed 2-repository
independent transactions. This figure shows a local-area
replication configuration. Configurations with 10 ms one-
way delay between repositories and between replicas gave
similar throughput but required significantly more clients
to load the system, due to higher request latency.

There is a slight drop in per-repository throughput
when moving from one repository to multiple reposito-
ries, due to the overhead of buffering transactions with
higher highTS values, but this stabilizes at higher num-
bers of repositories. This occurs in our microbenchmark
since clients and repositories are colocated on the same
LAN, and hence the clock skew can be greater than the
latency between requests; this effect is less likely when
there is a network delay between clients and repositories.

Per-client throughput is lower for distributed trans-
actions, owing to the additional communication delay;
distributed-transaction latency was found to be consis-
tently twice the latency of single-repository transactions.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Distributed Transactions

Independent
Independent (no blocking)

Figure 9: Throughput with distributed transactions.

6.1.3 Distributed Transactions

Figure 9 shows the impact of workloads with between 0
and 100% distributed transactions. For each data-point,
we examine workloads composed of independent trans-
actions concurrently with single-repository transactions
in timestamp mode; we examine locking mode in subse-
quent sections. We compare the overhead of the timestamp
protocol against a version of Granola that never blocks a
transaction to wait for earlier timestamps to complete, and
thus does not provide consistency.

This figure shows throughput in terms of operations per
second, since each distributed transaction involves running
an operation on each repository. An optimal coordination
scheme would exhibit constant throughput, independent
of the fraction of distributed transactions. Granola scales
well with an increase in distributed transactions, but we
observe throughput less than this optimal value, due to
communication and processing overhead. We observe a
10–20% reduction in throughput from waiting for earlier
transactions to complete, due to timestamp constraints.
We examine distributed transaction throughput on a more
realistic workload in Section 6.2.

6.1.4 Locking

Locking introduces overhead in two key ways: the exe-
cution cost of acquiring locks and recording undo logs;
and the wasted work from having to retry transactions
that abort due to lock conflicts. We examine both these
components separately in the following two sections, and
examine locking on a realistic workload in Section 6.2.

Lock Management Overhead. Figure 10 shows the
throughput of Granola and our version of Sinfonia on a
two-repository topology as a function of lock management
cost. We examine a workload composed entirely of dis-
tributed transactions, and run Granola in both timestamp
mode and locking mode. This experiment measures lock
overhead with no lock contention; we set transaction ex-
ecution cost to be equivalent to the cost of a new order

 0

 1000

 2000

 3000

 4000

 5000

 6000

0% 20% 40% 60% 80% 100%

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Lock Management Overhead

Granola (timestamp)
Granola (locking)

Sinfonia

Figure 10: Throughput with locking/logging overhead.

 0

 5000

 10000

 15000

 20000

1% 10% 100%

T
h

ro
u

g
h

p
u

t
(t

p
s)

Lock Con�ict Rate

Granola (timestamp)
Granola (locking)

Sinfonia

Figure 11: Throughput with varying lock conflict rate.

transaction in TPC-C, and vary the lock overhead as a
fraction of this execution cost.

As expected, Granola in timestamp mode is unaffected
by locking overhead, while both Sinfonia and Granola
in locking mode drop in throughput as lock management
overhead increases. Typical values for lock management
cost in OLTP workloads are in the vicinity of 30–40% of
total CPU load [18, 19]. At this level Granola gives 25–
50% higher throughput than lock-based protocols, even in
the absence of lock contention.

Lock Contention. We investigate the impact of lock
contention in Figure 11, on a two-repository topology with
100% distributed transactions. We control the lock con-
flict rate by having transactions modify either a private or
shared counter. This experiment measures lock contention
in isolation, and we tailor our application to have negligi-
ble lock management overhead.

Throughput for Sinfonia and Granola in locking mode
deteriorates fairly rapidly as lock conflict rate increases,
due to the cost of retrying aborted transactions; note
the logarithmic x-axis. Throughput for these transactions
drops to approximately 1000 tps at 100% contention,
which correlates with the average 1 ms latency we ob-
served for each non-aborted transaction.

Unlike our other experiments, Sinfonia’s maximum
throughput at low contention is limited here by our use

of a single coordinator, which serves as a bottleneck. Sin-
fonia achieves slightly higher throughput than Granola
in locking mode when there is high contention, since the
coordinator presents a consistent transaction ordering to
repositories, unlike in Granola where transactions may be
received by repositories in conflicting orders. We evaluated
an extension to Granola to support the use of lightweight
coordinator nodes, but observed minimal benefit in typical
workloads [13].

6.2 Transaction Processing Benchmark
We evaluate performance on an application based on the
TPC-C transaction processing benchmark [6]. This bench-
mark models a large order-processing workload, with com-
plex queries distributed across multiple repositories. Our
implementation stores the TPC-C dataset in-memory and
executes transactions as single-round stored procedures.

We used the C++ implementation of TPC-C from the
H-Store project [32] for our client and server application
code.2 The codebase that we used was designed for a
single node deployment and had no explicit support for
distributed transactions. By interposing the Granola plat-
form between the TPC-C client and server, we were able
to build a scalable distributed database with minimal code
changes; code modifications were constrained to calling
the Java ClientProxy from the C++ client, responding to
transaction requests from the GranolaApplication server,
and translating warehouse numbers to repository IDs.

We adopt the data partitioning strategy proposed in H-
Store. This partitioning ensures that all transactions can
be expressed as either single-repository or independent
transactions. We were able to disable locking and undo
logging when evaluating Granola, since TPC-C involves
no coordinated transactions. We also compare Granola
and Sinfonia against a version of Granola that is set to
always operate in locking mode, to measure the impact of
lock-based concurrency control.

Scalability. We examine scalability in Figure 12. This
experiment uses a single TPC-C warehouse per repository,
and increases the number of clients to maximize through-
put. 10.7% of transactions in this benchmark are issued to
multiple participants.

All systems exhibit the same throughput in a single-
repository configuration, since they both have similar over-
head in the absence of locking or distributed transactions.
Throughput drops for the lock-based protocols on multiple
nodes, however. The TPC-C implementation is highly opti-
mized and executes transactions efficiently, hence the lock
overhead imposes a significant relative penalty; the over-
head of locking and allocating undo records was approx-

2This implementation does not strictly adhere to the TPC-C spec.,
e.g., does not implement client “wait times” between requests [19].

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6 7 8 9 10

To
ta

l T
h

ro
u

g
h

p
u

t
(t

p
s)

Repositories

Granola
Granola (locking)

Sinfonia

Figure 12: Scalability of TPC-C implementation.

 0

 2000

 4000

 6000

 8000

 10000

 12000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
h

ro
u

g
h

p
u

t
(t

p
s)

Distributed Transactions

Granola
Granola (locking)

Sinfonia

Figure 13: TPC-C throughput new order transactions.

imately equal to the cost of executing each operation, in
line with similar measurements on the same workload [20].
Throughput reduction is also heavily impacted by the cost
of retrying transactions that abort due to lock conflicts. Sin-
fonia offers slightly lower performance than Granola in
locking mode, due to the additional overhead and latency
of communicating with the coordinator.

We observe a relatively constant latency regardless of
system size, with average distributed transaction latencies
of 2.9, 3.2, and 4.9 ms for Granola, Granola (locking) and
Sinfonia respectively. Sinfonia encounters higher latency
due to the additional communication delay.

Distributed Transactions. We further examine coordi-
nation overhead by modifying TPC-C to vary the pro-
portion of distributed transactions. This workload is com-
posed entirely of new order transactions and we adjust
the likelihood that an item in the order will come from a
remote warehouse [20]. The results for this benchmark are
shown in Figure 13, for a two warehouse configuration on
two repositories.

These results echo the previous benchmark, with the
performance difference dominated by lock conflicts and
lock management overhead. Granola achieves better re-
silience to distributed transactions in this benchmark than
in our microbenchmarks, since overhead in TPC-C is dom-
inated by transaction execution costs rather than proto-

col effects. Throughput for Granola in timestamp mode
decreases by approximately 50% when moving from 0
to 100% distributed transactions. This represents a very
low performance penalty for distributed transactions, since
each given distributed transaction involves execution cost
on two repositories instead of one.

7 Related Work

There has been a long history of research in transac-
tional distributed storage, including a rich literature on
distributed databases [9, 15, 27]. These systems provide
support for interactive transactions, whereas Granola tar-
gets a simpler single-round transaction model that can
nonetheless be used to support a wide number of applica-
tions [7, 32].

Relaxed Consistency. Many systems [17, 21, 29, 34]
relax the consistency guarantees provided by traditional
databases, in order to provide increased scalability and
resilience to network or hardware partitions. The growth
of cloud computing has led to a resurgence in popularity
of large-scale storage systems with weaker consistency,
typified by Amazon’s eventual-consistency Dynamo [14]
and a wealth of others [2–5,12]. These systems target high
availability and aim to be “always writable”, but sacrifice
consistency and typically offer constrained transaction in-
terfaces, such as Dynamo’s read/write distributed hash
table interface.

Per-Row Consistency. Systems such as SimpleDB [1]
and Bigtable [11] provide consistency within a single row
or data partition, but do not provide ACID guarantees
between these entities. A significant downside to relaxed-
consistency storage systems is the complicated application
semantics presented to clients and developers when oper-
ating with multiple data items. More recent protocols such
as COPS [26] and Walter [31] attempt to simplify applica-
tion development by providing stronger consistency mod-
els: causal+ and parallel snapshot isolation respectively.
These models do not prevent consistency anomalies how-
ever, and require the developer to reason carefully about
the correctness of their application.

Strong Consistency. Megastore [8] represents a depar-
ture from the traditional wisdom that it’s infeasible for
large-scale storage systems to provide strong consistency.
Megastore is designed to scale very widely, uses state-
machine replication for storage nodes, and offers transac-
tional ACID guarantees. As in SimpleDB [1], Megastore
ordinarily provides ACID guarantees within a single entity
group, but also supports the use of standard two-phase
commit to provide strong consistency between groups.

CRAQ [33] primarily targets consistency for single-object
updates, but mentions that a two-phase commit protocol
could be used to provide multi-object updates. Granola is
more heavily optimized for transactions that span multiple
partitions, and provides a more general operation model.

Granola is most similar in design to Sinfonia [7]. Sinfo-
nia also supports reliable distributed storage with strong
consistency over large numbers of nodes. Sinfonia’s mini-
transactions express transactions in terms of read, write
and predicate sets, whereas Granola supports arbitrary op-
erations and does not require a priori knowledge of lock-
sets. Granola also provides fewer message delays in the
transaction coordination protocol. The most significant dif-
ference is Granola’s support for independent distributed
transactions; this is of considerable benefit in suitable
workloads, avoiding conflicts and lock overhead.

The H-Store project argues for the relevance of trans-
actions that fit the independent model, and observes that
these transactions can be handled without locking [32].
The protocol sketched in the position paper was not a full
distributed implementation however, and does not work
with failures, delays and clock skew; later complete imple-
mentations used different techniques and did not optimize
for independent transactions [20, 36]. Granola introduces
a novel transaction coordination protocol based on time-
stamp exchange to provide the first complete protocol that
supports independent transactions in a distributed setting.

The Calvin transaction coordination protocol [35] was
developed in parallel with Granola, and provides similar
functionality. Rather than using a distributed timestamp
voting scheme to determine execution order, Calvin de-
lays read/write transactions and runs a global agreement
protocol to produce a deterministic locking order.

8 Conclusion

Granola is a distributed transaction infrastructure that pro-
vides serializability for one-round transactions. This sim-
plifies the reasoning required by application developers
and users of the system. Granola also supports a general
operation model, which allows development of arbitrary
storage applications.

Granola implements new protocols that provide lower
overhead for transaction coordination than in previous
work. Distributed transactions complete with one stable
log write and only three message delays.

Most significantly, this paper introduces explicit sup-
port for independent distributed transactions. Independent
transactions appear in many common workloads and allow
the development of high-performance distributed applica-
tions. Granola uses a timestamp-based implementation of
independent transactions that provides a substantial per-
formance benefit, due to an absence of lock conflicts and
management overhead.

Acknowledgments

We thank Dan Ports, the anonymous reviewers, and our
shepherd, Jon Howell, for their helpful feedback. This
research was supported under NSF grant CNS-0834239.

References

[1] Amazon SimpleDB. http://aws.amazon.com/

simpledb/.

[2] Apache Cassandra. http://cassandra.apache.org.

[3] Apache CouchDB. http://couchdb.apache.org.

[4] Apache HBase. http://hbase.apache.org.

[5] MongoDB. http://www.mongodb.com.

[6] TPC benchmark C. Technical report, Transaction Process-
ing Performance Council, February 2010. Revision 5.11.

[7] M. K. Aguilera, A. Merchant, M. A. Shah, A. C. Veitch,
and C. T. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM TOCS, 2009.

[8] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J. M. Lon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In CIDR, 2011.

[9] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth,
M. Franklin, B. Hart, M. Smith, and P. Valduriez. Prototyp-
ing Bubba, a highly parallel database system. IEEE TKDE,
March 1990.

[10] M. Castro and B. Liskov. Practical Byzantine Fault Toler-
ance and Proactive Recovery. ACM TOCS, 2002.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: a distributed storage system for structured data.
In OSDI, 2006.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. VLDB, 2008.

[13] J. Cowling. Low-Overhead Distributed Transaction Coor-
dination. PhD thesis, MIT, June 2012.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In SOSP, 2007.

[15] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker,
H. l Hsiao, and R. Rasmussen. The Gamma database ma-
chine project. IEEE TKDR, March 1990.

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.
The Notions of Consistency and Predicate Locks in a Data-
base System. CACM, Nov. 1976.

[17] R. Guy, J. Heidemann, W. Mak, T. Page Jr., G. Popek, and
D. Rothneier. Implementation of the Ficus replicated file
system. In USENIX, 1990.

[18] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stone-
braker. OLTP through the looking glass, and what we found
there. In SIGMOD, 2008.

[19] E. P. C. Jones. Fault-Tolerant Distributed Transactions for
Partitioned OLTP Databases. PhD thesis, MIT, 2012.

[20] E. P. C. Jones, D. J. Abadi, and S. Madden. Low over-
head concurrency control for partitioned main memory
databases. In SIGMOD, June 2010.

[21] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
High Availability Using Lazy Replication. ACM TOCS,
Nov. 1992.

[22] L. Lamport. The Part-Time Parliament. Technical Re-
port Research Report 49, Digital Equipment Corporation
Systems Research Center, Palo Alto, CA, Sept. 1989.

[23] K.-J. Lin. Consistency issues in real-time database systems.
In System Sciences, 1989.

[24] B. Liskov and J. Cowling. Viewstamped replication re-
visited. Technical report, MIT CSAIL, Cambridge, MA,
2012.

[25] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp File System. In
SOSP, 1991.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with COPS. In SOSP, 2011.

[27] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system. ACM TODS, December 1986.

[28] B. Oki and B. Liskov. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Dis-
tributed Systems. In PODC, 1988.

[29] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, David, and C. Steere. Coda: A highly avail-
able file system for a distributed workstation environment.
IEEE TC, 1990.

[30] F. B. Schneider. The state machine approach: A Tutorial.
Technical Report TR 86-600, Cornell University, Dept. of
Computer Science, Ithaca, N. Y., Dec. 1986.

[31] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In SOSP, 2011.

[32] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopou-
los, N. Hachem, and P. Helland. The end of an architectural
era (it’s time for a complete rewrite). In VLDB, 2007.

[33] J. Terrace and M. J. Freedman. Object storage on CRAQ:
high-throughput chain replication for read-mostly work-
loads. In USENIX ATC, 2009.

[34] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
and M. J. Spreitzer. Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System. In SOSP,
1995.

[35] A. Thomson, T. Diamond, S. chun Weng, P. Shao, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed transac-
tions for partitioned database systems. In SIGMOD, 2012.

[36] VoltDB Inc. VoltDB. http://voltdb.com.

