References to Remote Mobile Objects in Thor!

Mark Day
Barbara Liskov
Umesh Maheshwari
Andrew C. Myers

Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Abstract

Thor is a distributed object-oriented database where objects are stored persistently at
highly-available servers called object repositories, or ORs. In a large Thor system, perfor-
mance tuning and system reconfiguration dictate that objects must be able to migrate among
ORs. The paper describes two schemes for object references that support object migration,
one using location-independent names and the other, location-dependent names. The paper
analyzes the performance of the two schemes and concludes that location-dependent names are
the right choice for systems like Thor, where we want fast access to objects that have migrated.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems: Distributed sys-
tems; C.2.4 [Computer-Communication networks|: Distributed Systems — Distributed databases;
D.4.7 [Operating Systems]: Organization and Design — Distributed systems; E.2 [Data Storage
Representations|: Linked representations; H.2.2 [Database Management|: Physical Design;
General Terms: Design

Additional Key Words and Phrases: addressing, distributed object management, distributed
object-oriented database, location-dependent reference, location-independent reference, nam-
ing, object migration, object mobility, object reference, scalability.

1 Introduction

In distributed systems of the future, we expect to find object-oriented databases whose objects
reside at hundreds or thousands of nodes. An object residing at one of the nodes may contain
references to objects at other nodes, and may have to migrate from one node to another. A
useful system must provide efficient mechanisms for users to access objects of interest despite
these complications.

An efficient access mechanism allows remote objects to be located quickly. This paper
describes an implementation of object references that meets this criterion. It first describes
an efficient technique for accessing objects when objects are not allowed to migrate. Then,
it describes two ways of extending the scheme so that mobile objects can be accessed. Us-
ing location-dependent names as references, objects can be accessed with no additional time
penalty and a modest space penalty; location-independent names consume even less space, but

! An earlier version of this paper titled “Naming and Locating Objects in Thor” was presented at the Workshop
on Objects in Large Distributed Applications, Vancouver, BC, 17th October 1992. This research was supported
in part by the Advanced Research Projects Agency of the Department of Defense, monitored by the Office of
Naval Research under contract N00014-91-J-4136 and in part by the National Science Foundation under Grant
CCR-8822158.

accessing an object that has moved requires additional communication. The schemes were de-
veloped within the context of the Thor object-oriented database system[11], but the results are
applicable to other distributed object systems.

We begin in Section 2 with a brief overview of the architecture of Thor. Section 3 discusses
the requirements for object references. Section 4 describes the schemes for implementing object
references. We conclude with an analysis of the performance of the mechanisms.

2 Overview of Thor

Thor provides a universe of objects that are both persistent and highly available. That is,
an object in the universe survives system failures with high probability and is accessible when
needed. Each object has an encapsulated state that cannot be directly observed and a set of
methods that users can call to interact with it. Its state contains data such as integers, booleans,
and characters and also references to other objects; we estimate that the average object is on
the order of 70 bytes and contains 5 references to other objects (similar to [1, 13, 14]). The size
of an object can vary over its lifetime.

Although the Thor universe appears to clients as a single entity, it is distributed across
servers called object repositories, or ORs, each of which stores some subset of the persistent
objects. At any moment, an object resides at a single OR, but it can migrate from one OR to
another. To achieve high availability, each OR is replicated at a number of server machines and
its objects have copies stored at these servers.

Thor attempts to cluster objects both at ORs and on disk at a single OR. For example, if
x refers to y, both objects are likely to be stored at the same OR, and at disk locations that
are fairly close together. We assume that good clustering at ORs can be achieved, so references
that cross OR boundaries are rare.

Thor provides a persistent root for the object universe. An object becomes persistent when
it becomes reachable from the persistent root. If an object becomes unreachable from the root,
its storage is reclaimed by a distributed garbage collector[12].

Client programs run at client workstations that are typically distinct from the servers that
run ORs. For each client program, there is a front end, or FE, running on the client’s machine.
The FE provides an interface for the client to access Thor. To ensure consistency despite
failures and concurrency, client calls take place within an atomic transaction[4]; the client
program indicates when the current transaction should attempt to commit.

Client programs never obtain direct pointers to objects; instead, an FE issues handles.
Handles can be used to identify objects in subsequent clients calls but are local to that client
session. When starting, a client can request a handle for the persistent root object; it can
then execute methods of this object (which is in fact a directory), obtaining handles for further
objects, and so on. Since direct pointers to objects never move outside Thor, it is safe to destroy
the storage of objects that are not reachable from the root or from a handle issued by an active
FE.

To speed up method execution, the FE keeps copies of objects in an object cache. When
a client program makes a call, no communication with any ORs will occur if all the objects
needed to carry out the call already reside in the client cache. If there is a cache miss, however,
the FE must fetch the needed object from its OR. When the FE fetches an object, the OR can
supply additional objects that may be of use shortly. The FE caches these prefetched objects,
in addition to the objects recently used by the client.

Objects in the FE cache may contain references to objects that are not in the cache; an

OR X

I~

™\

(o]

&

<

ORY
Figure 1: Object References

attempt to follow such a reference triggers a fetch request. For example, in Figure 1 object x
(at X) contains references to objects o (at X) and y (at Y). The FE cache contains copies of
objects x and o (perhaps o was prefetched when x was fetched); the copy of x at the FE points
directly to the local copy of o. However, the FE does not have a copy of y. If an attempt is
made to call a method of y (e.g., as part of executing a call on a method of x), the FE must
determine which OR stores y and then fetch y from that OR.

3 Requirements

This paper is concerned with the form of references used at ORs and also at FEs to refer to
remote objects (like y); we do not discuss the form of references at FEs (such as that from x to
0). The form of references determines how quickly fetch requests can be carried out and when
prefetching can be done. We believe that prefetching and fast fetches are critical to system
performance. Prefetching determines how often method calls hit in the FE cache; we hope this
happens most of the time. When a miss occurs, however, it is in the critical path for the user
and has a direct effect on the latency of the call. Therefore, even if misses are rare, they heavily
affect performance as perceived by users.

We want to provide good performance for clients as they invoke methods on objects. How-
ever, our implementation approach must be consistent with a number of constraints:

240

1. Thor is big. The object universe can be very large (e.g., or more objects), and there

can be many servers and clients.

2. The size of the system may change over time. For example, as the load on the system
grows, we may add additional ORs to store the persistent objects.

3. Objects may persist for a long time (years).

4. Objects may migrate from one OR to another.

Object mobility is needed in any system intended to be used on a larger scale than a single
workgroup and for a long enough time that the system can outgrow its initial configuration. As
the system grows or shrinks and as usage patterns shift, we may find that system performance
would improve by moving some objects from their current OR to some other OR. For example,
an entire group of related objects might be moved either to reduce load at the old OR; or,
because the new OR is closer to the client nodes that usually are used to access the objects,
an object might be moved to an OR that contains most of the references to it; or, if a system
is shrinking so that it has fewer machines available, it may be desirable to eliminate an OR
entirely, moving all its objects to other ORs. Individual objects probably do not move often
and at any moment the number of objects that have moved “recently” (such as in the last
hour) is probably quite small. However, because objects may persist for long times, the number
of objects that have moved from their original “birth” OR may be very large. Our design is
intended to deal with such a situation.

There are two main issues in designing an object reference scheme for a system with mobile
objects. First, some way of locating objects is needed, i.e., determining which OR currently
stores an object. Second, once an object has been located at an OR, we must find it in that
OR’s memory. Our goal is to minimize the costs of both of these activities: We would like
almost always to determine the OR where the object resides without any communication, and
we would like to determine its memory location at its OR without reading any addressing
information from disk.

One possibility is to use virtual memory addresses as references. The idea is to partition the
address space among the ORs; each OR stores a portion of the address space and its objects
have addresses in this portion. However, the fixed, global addresses mean that ORs do not have
control of their local memory layout and thus cannot relocate objects. Object relocation may
be needed if objects grow or shrink, or if formerly persistent objects cease to be persistent and
are garbage collected.

Therefore, we conclude that we must use names to refer to objects. The next section
describes two naming schemes, location-independent names and location-dependent names.
Location-independent names do not change even when an object migrates from one OR to
another, whereas location-dependent names change when this happens.

4 Forms for Object References

This section describes two forms for object references. We begin by assuming that objects don’t
move and describe an efficient way of implementing references; our technique is somewhat like
that in Mneme[13]. Then we discuss how to handle mobile objects. The two approaches differ
in whether an object’s name changes when it moves.

4.1 The Basic Scheme

When an object becomes persistent, an OR is selected for it. This birth site OR assigns it an
entity called an zref, which will be used to name it. An xref is a pair containing the OR-id
of this OR and an oref, which is a name for the object within the OR. This structure makes
it easy for an OR to issue xrefs for newly persistent objects; it just selects an oref that is not
used locally. In addition, since the xref contains the OR-id, an FE always knows the OR of an
object (given our assumption that objects don’t move) — so fetching an object requires just
one message round trip. An OR can easily determine which references in a fetched object are

to local objects. They can then be prefetched and returned to the FE in the same message as
the fetched object.

An OR stores objects in segments. A segment is stored in a contiguous region of memory
and is read and written to disk as a unit[5]. It contains a group of objects that are related to
one another, ie., objects are clustered in segments.

An oref is structured so that an OR can efficiently find the corresponding object. The oref
is divided into a segment id and an object number. A table at the OR maps segment ids to
disk addresses. At the beginning of a segment is a header that maps the object numbers of its
objects to their disk locations; this header is stored with the segment and read/written when
the segment is read/written.

Since we want to read the segment as a unit, it should not be too big; a size of about 64K
bytes seems likely to use disk throughput effectively[2]. (The limit on segment size means that
storing large objects requires another scheme, which is not discussed in this paper.) If objects
average around 70 bytes, a segment can hold about 900 objects.

The segment table is reasonably small. If an oref were 32 bits long and 10 bits were allocated
to indexing objects in a segment, the number of segments that could be indexed would be 4M.
An OR could hold around 3.6 G objects, and we would need a table size of 64M bytes, assuming
each entry holds an 8 byte disk address. This table might well fit in the primary memory of
machines of the near future.

To find an object, an OR looks up its segment id in the segment table. Then it reads the
segment from disk if necessary; the read may not be necessary because segments are cached
in the OR’s primary memory. Because of object clustering in segments, we expect that often
there will be no disk I/O either to access the segment table entry or the segment.

This scheme has excellent performance but does not allow objects to migrate. Below we
show how to extend it to handle mobile objects. The first extension continues to reference the
object using the xref assigned to it when it became persistent. The second gives the object
a new xref each time it moves, and propagates the information about the new name so that
references use the new name instead of the old one.

4.2 Location-Independent Names

Location-independent names, also called object identifiers or oids, are attractive because they
stay the same even when an object moves from one OR to another. Therefore, all references to
the object continue to be accurate in spite of the move. However, finding the OR that stores an
object becomes more difficult because the reference does not encode its location. Some entity,
the locator, must record information about the current locations of objects.

The xref assigned to an object at the birth site becomes its oid and continues to be used to
refer to it even if it moves. If an object moves, its new OR assigns it a new xref containing the
id of the new OR as its first part, and tells the locator about the new xref. The oref in the new
xref is selected in the same way that orefs are assigned to newly-created objects: the OR places
the object in a local segment close to related objects and assigns it an oref in this segment.

When the FE fetches an object, it determines the current xref of the object as discussed
below. Then it sends the fetch request to the OR identified in the current xref; the new xref is
included in the fetch request. When the fetch request arrives at the new OR, it can be handled
in the usual way by locating the object’s segment using the segment table and then reading the
segment from disk if necessary.

Some prefetching is still possible with this scheme, since the OR can recognize references
to local objects. An object may refer to objects in the same segment as itself; if so, when it is

OO,

Figure 2: Tracking a Mobile Object using Location-Independent Names.

fetched the OR will be able to prefetch objects to which it refers. But if the object moves to
an OR containing objects that refer to if, prefetching will not work even if it is stored in the
same segment as these objects — the other objects will refer to it using its oid, which appears
to be a reference to an object at a different OR.

There are two ways the FE can find out the current xref of an object. The first possibility is
that some OR keeps track of where the object is. Since many objects do not move once created,
the obvious locator OR is the birth site. To do a fetch, an FE sends a fetch request to the OR
listed in the object’s oid; the OR either responds with the object (and some other prefetched
objects) or it tells the FE the current xref of the object.? Because the birth site is a locator, it
must store the locations of all objects born there until they are no longer referenced. When an
object moves from its birth site, its new location is stored in a small stub.

Figure 2 illustrates this scheme. OR A contains an object y, which refers to an object x
that has moved from its birth site OR X to OR B. Object y refers to x using its oid; this oid
actually refers to a stub at OR X that contains x’s new xref.

A problem with this scheme is that two message round trips will be needed to locate an
object that has moved; this cost will be incurred for many objects since we expect that a
sizable fraction of objects will eventually migrate. In addition, an OR that happens to act as
the locator for many heavily-used objects could become a bottleneck. Even if the objects move
elsewhere, we cannot move the location workload away because we cannot change which OR
is encoded into the objects’ oids. Also, the locator must logically exist as long as any of its
objects exist; to remove an OR requires assigning its locator role to some other OR.

Another way to locate an object is to make use of a name service that maintains the mapping
from oids to xrefs. The name service must be highly-available. Otherwise, an object might be
unavailable because of a crash of the name service — even though its current OR is available3.

A name service requires a lot of replicated storage. Worse, two round trips are needed to
fetch an object: one to a name server, and a second to the storing OR. Since an object is likely
to be at its birth site, it may be a good idea to check there before consulting the name service.
But then three round trips are needed to fetch an object that has moved.

Both the birth-site and name-service schemes can be speeded up by storing a hint in a
reference, making it a (hint, zref) pair. The hint contains information about the current
location of the object, unless the object moved very recently. The scheme won’t work well

%A birth-site locator scheme was used in R*[10]. R* sites were not highly available, so the crash of a locator
could make an migrated object unavailable even though the object’s site was available. This problem does not
exist in Thor because ORs are highly available.

3Mechanisms for implementing such highly-available services are described in [6] and [9].

unless the hint is usually accurate. This can be accomplished with the tracking mechanism
described in Section 4.3.1.

Using the birth site as the locator seems preferable to using the name service because it is
simpler and has at least as good performance. Therefore we consider only this scheme in the
rest of the paper.

One final point: if an object moves from an OR that isn’t its birth site, the OR must mark
its former xref as unused — for example, by marking the entry for the object’s oref in the
segment header. The mark must be retained until the xref is no longer in use anywhere, which
can be determined with a tracking mechanism like that in Section 4.3.1.

4.3 Location-Dependent Names

This section describes the alternative to location-independent names: location-dependent names.

When an object moves, its new OR places it in a local segment that contains related objects
and then gives it a new, local xref. The object’s previous storage at the old OR is turned into
a surrogate that contains its new xref. (Surrogates are like forwarders in Mneme[13] and leaves
in LOOM][8].) Thus, instead of a predefined locator OR, the OR that last held an object has
up-to-date information about its location.

The information about the new xref for a moved object is propagated (in a manner discussed
below) to objects that refer to it. Once propagation is complete, no references to the old location
will exist, and the surrogate can be garbage-collected.

When the FE fetches an object, it sends the fetch request to the OR named in the xref.
This OR will hold the object unless the object has moved recently. The object can be located
within an OR using just the segment table, and prefetching works just as when objects didn’t
move.

Figure 3 illustrates location-dependent names. In part i, an object o has recently moved
from OR B to OR A. Object p at OR B and object q at OR C both refer to o. Object p
refers to o using its new xref, but q uses the old xref; this old reference gets it to a surrogate at
OR B that contains the new xref. In part i, information about the new xref has propagated
throughout the system. Now q refers to o using the new xref, and the superfluous surrogate at
OR B has been deleted.

Location-dependent names also work well if an object moves to a different segment at the
same OR. With location-independent names, both the old and new segments of such a moved
object must be read when it is fetched; with location-dependent names, usually only the new
segment needs to be read.

4.3.1 Tracking Objects

Location-dependent names depends on timely propagation of xref information for moved ob-
jects. This section describes the tracking mechanism.

For distributed garbage collection, each OR maintains an inlist for each other OR, listing
the local objects referred to by objects at that other OR. This table acts as an additional root
during garbage collection, preventing externally referenced objects from being collected even
though they may not be reachable locally. (A similar table keeping information about references
exists at FEs.)

ORs also maintain a location table that stores (old zref, new zref) pairs. Whenever an object
moves away from an OR, in addition to turning the object’s storage into a surrogate, the OR
sends messages to any other ORs that have references to that object, informing them of the

ORA ORB ORC

ORA ORB ORC

Figure 3: Tracking a Mobile Object using Location-Dependent Names.

new xref. It uses the inlists to determine which ORs to contact. When these ORs learn of a
new location for an object to which its objects refer, they add an entry to the location table.

The garbage collector uses the location table to substitute new xrefs. Each xref contained in
an object is looked up in the table and replaced by the new xref if a match is found. Information
about new xrefs can also be propagated when objects are fetched and prefetched. The speed
with which information about the new xref propagates depends on the frequency of garbage
collection; we assume that garbage collection happens reasonably often.

Propagation of the new xref means that surrogates and location table entries are eventually
unneeded. The garbage collector can recognize this and discard surrogates and table entries.

Our use of forwarding addresses is similar to Fowler’s work[3, 7]. Frequently-moved objects
may generate chains of surrogates. In Fowler’s scheme, clients perform path compression by
sending updates to members of a chain of forwarding addresses. In Thor, path compression is
performed by the ORs instead.

4.3.2 Xrefs vs. Orefs as references

With location-dependent names we have a choice: we can either use xrefs or orefs as references.
Above we described how the system would work using xrefs as references. This is what we plan
to do in our implementation. However, using orefs is attractive because orefs are smaller than
xrefs. For example, if we allow a maximum of 4G objects per OR, we could get by with 32-bit
orefs. By contrast, xrefs are likely to be 64 bits.

We plan to use xrefs as references for three reasons. First, we expect many client machines
will be 64-bit machines. If we use orefs as references at ORs, when objects are copied to 64-
bit FEs we will need to expand them, replacing the 32-bit orefs with 64-bit virtual memory
addresses at the FE. This will require an extra copy of the object, which can be avoided if we

use xrefs as references at ORs.

Second, using xrefs as references is simpler than using orefs. If we use orefs as references,
objects cannot hold references to objects at other ORs. Instead, we would need surrogates for
all cross-OR references. To refer to a remote object, an object would contain the oref of a local
surrogate, and the surrogate would contain the xref of the remote object. We would want to
prefetch surrogates when we fetch objects; otherwise, when the FE follows such a cross-OR
reference, it would have to fetch the surrogate from the surrogate’s OR before it could fetch
the object. By contrast, with xrefs as references, prefetching of surrogates is unnecessary. A
usually-correct xref for the referenced object will always be fetched to the FE.

A third reason for using xrefs is that using orefs imposes an upper bound on the number
of objects at a single OR. Limiting an OR in this way may not be so bad; since orefs can be
reused, it only constrains the number of objects in existence at a particular moment in time.
Furthermore, in Thor it is easy to add another OR if more objects are needed, since Thor hides
the existence of multiple ORs from client programs. Nevertheless, if a single application had a
data set so large that it led to many cross-OR references, its performance would be poor. With
the xref scheme, such an application could be supported by a larger OR; the oref scheme lacks
this flexibility.

4.3.3 The Need for Unique Identifiers

With location-dependent names, two different xrefs may refer to the same object. Such a
situation is shown in Figure 3i. Here object p refers to o using an xref of the form (OR 4,)
while q contains an xref of the form (ORp, 3) — since OR C has not yet heard about the move.
Despite the difference in form, p and q refer to the same object.

To implement object identity correctly, each object contains a unique identifier field (uid)
that is not visible to client code. Determinations of object identity use uids instead of pointers.
When an FE fetches an object, it compares its uid with those of other objects already present
(using a uid table) and discards the object if it is a duplicate. An identity test is performed as
follows. If both operands are present at the FE, we do the obvious thing: the two operands are
identical if and only if they have the same virtual memory address. Also, if both operands have
the same xref they are identical. However, if the operand xrefs differ, operands not present at
the FE must be fetched before the test can be carried out. With location-independent names,
this fetch wouldn’t be necessary.

5 Discussion

We have discussed how to implement references in a distributed, object-oriented database sys-
tem. We first presented a base mechanism suitable for any system in which objects are not
allowed to move from one server to another. Then we described two ways that mobile objects can
be supported by building on top of the base mechanism. One scheme uses location-independent
names as references, and the other, location-dependent names.

The base mechanism allows objects to be accessed in one communication and at most two
disk reads, assuming the segment table must be paged. However, because of the way objects
are clustered in segments, we expect that often no disk reads will be needed. The performance
of the schemes for mobile objects is summarized in Figure 4. The two schemes are referred to as
IND (for location independent names) and DEP (for location dependent names); in addition, we
analyze scheme IND-hint, which uses location-independent names as references but augments

Scheme ‘ Messages ‘ Disk I/O ‘ Space
IND 1 round trip | 1read | 10 bytes/moved object

IND-hint none none 40 bytes/object + 10 bytes/moved object
DEP none none 8 bytes/object

Figure 4: Additional Cost of Schemes in Space and Time.

them with a hint that contains the current xref of the object (unless the object has moved
recently).

The figure shows the additional cost of supporting mobile objects. For example, locating
an object that has moved using IND requires a message round trip (to the object’s birth site)
in addition to the communication to the object’s actual OR. It may also require a disk access
at the birth site (if the object’s original segment is not in primary memory).

The space calculations assume that 64 bits are sufficient to hold xrefs. Scheme IND requires
additional space proportional to the number of objects that have moved from their birth site:
10 bytes per moved object, since the stub must contain the new xref plus 2 bytes in the segment
header to store the index of the stub. Scheme IND-hint requires 8 additional bytes per reference:
with five references per object on average, a cost of 40 bytes per object — for all objects in the
system, not just moved objects. Finally, scheme DEP requires 8 bytes per object to store the
object uid. We do not count the space used to store surrogates since they are short-lived.

We see in the figure that scheme IND-hint consumes more space than DEP without achieving
better performance. (This would be true even if we had shorter hints, e.g., that just identified an
object’s new OR.) Therefore we eliminate IND-hint from further consideration. The comparison
of IND and DEP is simple: DEP has better time performance than IND but consumes more
space. Note that the figure underrepresents the time cost of IND, because IND is unable to
prefetch an object that has migrated.

We conclude that the choice of scheme depends on how important it is to fetch moved objects
quickly and how important prefetching is for them. Good performance for moved objects is
an important goal for Thor; we want to allow objects to migrate freely, and we expect that
a large proportion of the total objects in the system will move. Therefore, we plan to use
location-dependent names as references in our implementation.

6 Acknowledgements
The authors gratefully acknowledge the assistance of Sanjay Ghemawat and the anonymous
referees.

References

[1] CArReY, M. J., DEWITT, D. J., AND NAUGHTON, J. F. The OO7 benchmark. In
Proceedings of the 1993 ACM SIGMOD (Washington, DC, May 1993), pp. 12-21.

[2] CARSON, S., AND SETIA, S. Optimal write batch size in log-structured file systems. In
Proceedings of the 1992 USENIX File Systems Workshop (1992), pp. 79-91.

[3] FOWLER, R. J. Decentralized object finding using forwarding addresses. Tech. Rep.
85-12-1, Department of Computer Science, University of Washington, December 1985.

10

[4]

[5]

[10]

[11]

[12]

[13]

[14]

GRAY, J., AND REUTER, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo, California, 1993.

HornNiICK, M. F., AND ZDONIK, S. B. A shared, segmented memory system for an object-
oriented database. ACM Transactions on Office Information Systems 5, 1 (January 1987),
70-95.

Hwang, D. J.-H. Constructing a highly-available location service for a distributed envi-
ronment. Tech. Rep. MIT/LCS/TR-410, MIT Laboratory for Computer Science, January
1988.

Jur, E., LEvy, H., HUTCHINSON, N., AND BLACK, A. Fine-grained mobility in the
Emerald system. ACM Transactions on Computer Systems 6, 1 (February 1988), 109-133.

KAEHLER, T., AND KRASNER, G. LOOM - Large object-oriented memory for Smalltalk-
80 systems. In Readings in Object-Oriented Database Systems, S. B. Zdonik and D. Maier,
Eds. Morgan Kaufmann, 1990, pp. 298-307.

LApIN, R., Liskov, B., SHRIRA, L., AND GHEMAWAT, S. Lazy replication: Exploiting
the semantics of distributed services. Tech. Rep. MIT/LCS/TR-484, MIT Laboratory for
Computer Science, July 1990.

LinDsAY, B. Object naming and catalog management for a distributed database manager.
In Proceedings of the 2nd International Conference on Distributed Computing Systems
(Paris, 1981), pp. 31-40.

Liskov, B., DAY, M., AND SHRIRA, L. Distributed object management in Thor. In
Distributed Object Management, M. T. Ozsu, U. Dayal, and P. Valduriez, Eds. Morgan
Kaufmann, San Mateo, California, 1993.

MAHESHWARI, U. Distributed garbage collection in a client-server, transactional, persis-
tent object system. Tech. Rep. MIT/LCS/TR-574, Massachusetts Institute of Technology,
1993.

Moss, J. E. B. Design of the Mneme persistent object store. ACM Transactions on
Information Systems 8, 2 (April 1990), 103-139.

StAMOSs, J. W. A large object-oriented virtual memory: Grouping strategies, measure-
ments, and performance. Tech. Rep. SCG-82-2, Xerox PARC, May 1982.

11

