
Mobile Proactive Secret Sharing

by

David Andrew Schultz

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 29, 2007

Certified by .

Barbara Liskov
Ford Professor of Engineering

Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Mobile Proactive Secret Sharing

by

David Andrew Schultz

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

This thesis describes mobile proactive secret sharing (MPSS), an extension of proac-
tive secret sharing. Mobile proactive secret sharing is much more flexible than proac-
tive secret sharing in terms of group membership: instead of the group of shareholders
being exactly the same from one epoch to the next, we allow the group to change
arbitrarily. In addition, we allow for an increase or decrease of the threshold at each
epoch. We give the first known efficient protocol for MPSS in the asynchronous
network model. We present this protocol as a practical solution to the problem of
long-term protection of a secret in a realistic network.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

3

4

Acknowledgments

I would like to thank my advisor, Barbara Liskov, for her encouragement and support

throughout the process of researching and writing this thesis. Her meticulous eye

caught many problems with the protocol design early on, and her many reviews and

suggestions of this document significantly improved the clarity of the presentation. I

am greatly indebted to Moses Liskov as well, who was particularly helpful in designing

the cryptographic elements of the protocol and verifying their correctness.

I would also like to thank my past and present officemates at MIT: Winnie Cheng,

James Cowling, Ben Leong, Daniel Myers, Alice Reyzin, Rodrigo Rodrigues, Liuba

Shrira, and Ben Vandiver. In addition to the many fruitful discussions I have had

with them on aspects of this thesis, they have been a pleasure to work with, and

have provided the occasional distractions that helped preserve my sanity. Several

of my friends and collaborators at Berkeley, in particular David Molnar and David

Wagner, helped spark my interest in threshold cryptography and the topic of this

thesis, so I would like to thank them as well.

I am deeply indebted to my parents, Jean and Randy, and my sister Laura, for all

of the love and support they have shown me throughout my lifetime. They helped me

through good times and bad, and the examples they set for me have been invaluable.

I thank God above all for my family and my many blessings, and for His love and

guidance in my life.

Finally, I thank Shafi Goldwasser, Stanislaw Jarecki, and Ron Rivest for useful

discussions about secret sharing and other topics related to this thesis.

5

6

Contents

1 Introduction 13

1.1 Motivating Proactive Secret Sharing 15

1.2 Contributions . 17

2 Related Work 21

2.1 Basic Schemes . 22

2.1.1 Secret Sharing . 22

2.1.2 Verifiable Secret Sharing . 22

2.2 Proactive Secret Sharing . 24

2.2.1 Ostrovsky and Yung . 24

2.2.2 Herzberg et al. 25

2.2.3 Cachin et al.’s Asynchronous Scheme 26

2.3 Mobile Proactive Secret Sharing . 27

2.3.1 The Desmedt and Jajodia Scheme 27

2.3.2 Wong, Wang, and Wing Scheme 28

2.3.3 APSS . 28

2.3.4 MPSS — Our Scheme . 29

7

3 Network Model and Assumptions 31

3.1 Network Assumptions . 31

3.2 Adversary Assumptions . 34

3.3 Cryptographic Assumptions . 35

3.4 Epochs and Limitation of Corruptions 36

3.5 Our Epoch Definition and the Importance of Forward-Secure Signatures 38

3.6 Pragmatics . 40

4 Our Secret Redistribution Scheme 43

4.1 Preliminaries . 43

4.1.1 Shamir’s Secret Sharing Scheme 44

4.1.2 Verifiable Secret Sharing . 44

4.1.3 Herzberg et al.’s Proactive Secret Sharing 46

4.1.4 Group Size . 47

4.2 Secret Redistribution . 48

4.2.1 Generating New Shares . 49

4.2.2 Protocol Sketch . 50

4.2.3 Verifying Proposals . 52

5 The Redistribution Protocol 57

5.1 BFT . 60

5.2 The Share and Recon protocols . 62

5.3 The Redist0 protocol . 63

5.3.1 Redist0 Messages . 63

5.3.2 Redist0 Steps . 66

8

6 Improving the Performance of the Basic Protocol 73

6.1 Verifiable Accusations . 73

6.1.1 A Straw-Man Scheme . 74

6.1.2 Fixing the Straw-Man Scheme: Forward-secure IBE 75

6.1.3 Canetti-Halevi-Katz Forward-Secure Encryption 79

6.1.4 Our Forward-Secure IBE Scheme 80

6.1.5 Verifiable Accusations from Forward-Secure Encryption 82

6.1.6 Problems with Accusations in the Scheme of Herzberg et al. . 85

6.2 Reducing Load on the Coordinator 86

7 Changing the Threshold 91

7.1 Decreasing the Threshold . 92

7.2 Increasing the Threshold . 93

7.2.1 A Straw Man Protocol . 94

7.2.2 A Two-Step Redist+c . 97

7.2.3 A One-Step Redist
ν
+c . 99

7.2.4 Comparing Redist
ν
+c and Redist+c 107

8 Correctness 109

8.1 Secrecy . 110

8.2 Integrity . 116

8.3 Liveness . 118

8.4 Verifiable Accusations . 121

8.5 Reducing Load on the Coordinator 123

8.6 Decreasing the Threshold . 124

8.7 The Two-Step Redist+c . 124

9

8.8 The One-Step Redist
ν
+c . 125

8.8.1 Secrecy Protection of Redist
ν
+c 126

8.8.2 Liveness of Redist
ν
+c . 127

8.8.3 Integrity Preservation for Redist
ν
+c and Recover 130

8.8.4 Liveness and Secrecy for Recover 131

9 Performance 135

9.1 Performance of Our Scheme . 139

9.1.1 Optimistic Case . 139

9.1.2 Average case with non-adaptive adversary 140

9.1.3 Worst case . 141

9.2 Zhou et al. Scheme Performance . 142

9.3 Cachin et al. Scheme Performance . 142

9.4 Separating the Proposal Selection and Agreement Phases 144

10 Conclusions 147

10.1 Open Problems and Future Work . 149

10

List of Figures

5-1 Message Formats for the Unmodified Redistribution Protocol 64

5-2 Proposal Selection Algorithm . 69

6-1 Identity-Based Encryption . 77

6-2 Forward-Secure Encryption . 78

6-3 Binary Tree Encryption Illustration 79

6-4 Tree Encoding for Forward-Secure IBE 81

6-5 Modified Message Formats for Verifiable Accusations 83

6-6 Proposal Selection Algorithm for Verifiable Accusations 83

6-7 Message Formats using Hashing . 87

7-1 Message Formats for Recover . 104

8-1 Information Learned by the Adversary 111

9-1 Protocol Performance Comparison: Bytes Sent by Each Honest Server 137

9-2 Protocol Performance Comparison: Rounds of Communication 138

9-3 Proposal and Agreement Overheads of Each Protocol 145

11

12

Chapter 1

Introduction

Secret sharing allows a collection of parties to possess shares of a secret value (such

as a secret key), such that any t + 1 shares can be used to reconstruct the secret,

yet any t shares provide no information about the secret. Sharing of cryptographic

keys is crucial in distributed systems intended to withstand Byzantine faults, that

is, failures that cause servers to behave arbitrarily badly, perhaps because they have

been compromised. This is in contrast to systems that tolerate only fail-stop failures,

in which servers stop responding altogether. In the context of Byzantine faults, secret

sharing allows systems to perform cryptographic operations securely, preserving the

secrecy of the keys despite up to t malicious servers.

In long-lived systems, however, servers can be compromised over time, giving

an adversary the opportunity to collect more than t shares and recover the secret.

Additionally, systems may fail to function properly, for instance due to hardware

failure or an attack. To prevent the number of failures from exceeding the threshold

the system is designed to tolerate, servers must be repaired or replaced over time,

perhaps with newly-installed servers. Moreover, this replacement must be performed

13

periodically even in the absence of detected faults due to the potential for lie-in-wait

attacks. In this type of attack, faulty servers appear to behave correctly while an

attacker compromises additional machines; once t+1 servers have been compromised,

they start behaving badly or simply reveal the secret to the attacker.

Proactive secret sharing (PSS) schemes, e.g., [CKLS02, DJ97, HJKY95, OY91,

WWW02, ZSvR05], address the problem that shares can be exposed or lost over

time due to Byzantine faults. In PSS, servers execute a share regeneration protocol,

in which a new set of shares of the same secret is generated and the old shares

discarded, rendering useless any collection of t or fewer shares the adversary may

have learned. Furthermore, PSS schemes typically provide a share recovery protocol

so that a full set of new shares can be generated even if some of the old shares (up

to some maximum number of faults tolerated) have been lost.

However, proactive secret sharing has limitations that make it impractical in

many situations. Traditional proactive secret sharing imagines a world in which

servers are “recovered” at a rate equal to that at which they are compromised. A

significant flaw in PSS is that “recovery” of nodes that have been compromised or

suffered irreparable hardware failures is problematic. Merely replacing the machine’s

hardware or software might eliminate the fault, but it does not undo all of the

damage; each machine’s identity on the network is defined by some secret state

(e.g., private keys), and after a failure, this state might be deleted, corrupted, or

known to the adversary. Consequently, the recovered server needs new secret state

and in essence, a new identity, and we may as well consider it to be a new server.

Ordinary PSS schemes [CKLS02, HJKY95, OY91] generate new shares of the shared

secret, but they assume that other secret state associated with each node is never

compromised, so the identities of the shareholders are fixed over the lifetime of the

system.

14

A better approach is to allow shareholders to be replaced with different nodes.

This provides a reasonable methodology for a system administrator: identify a set

of “fresh” nodes, e.g., recently added nodes or newly recovered nodes with new keys,

and direct the secret shares to be moved to them. However, PSS schemes do not

permit the replacement of one shareholder with another. Furthermore, a difficulty in

defining such schemes is that a näıve transfer of shares from an old group of servers

to a new group may reveal the secret if more than t faulty servers exist between the

old group and the new group.

An additional point is that PSS schemes do not allow the threshold t to change,

which may be desirable in a long-lived system. The threshold has a meaning: it

represents an assumption about how easily nodes can become corrupted. If current

events dictate a reevaluation of this assumption, it would be better to change to a

new threshold rather than start over. For instance, a new vulnerability in Windows

might lead to a decision to increase t, whereas the patch of that vulnerability might

later lead to it being decreased.

1.1 Motivating Proactive Secret Sharing

This section describes a typical scenario in which proactive secret sharing plays a key

role, and clarifies why secret sharing is important. Byzantine-fault-tolerant systems

are typically intended to implement long-running, reliable services that process re-

quests on behalf of clients. They function correctly despite up to a threshold number

of Byzantine faults among the servers that carry out the operations. If the sys-

tem operates over an untrusted network such as the Internet, it must also be able

to certify the results of these operations using cryptography (threshold signatures).

Additionally, the system may need to selectively decrypt messages, such that the

15

authority to decrypt is distributed amongst the servers and faulty servers cannot

decrypt messages unilaterally (threshold encryption).

Byzantine-fault-tolerant systems that require selective decryption have a clear

need for proactive secret sharing. If one were to use an ordinary public key en-

cryption scheme in which the private key were distributed to all of the servers, a

single malicious server could decrypt ciphertexts arbitrarily. Threshold encryption

schemes [BBH06, CG99] address this issue by assigning a key share to each server and

distributing the power to decrypt amongst the servers such that more than a thresh-

old number of servers must participate in order to decrypt any message. As more

and more servers become faulty, share refreshment via PSS is needed to compensate.

If the system needs to sign messages, it might be less obvious to the reader why

PSS is important, so this section describes a simpler approach and shows why it

fails. An alternative to proactive secret sharing is to assign a public/private key

pair to each server and make the corresponding public keys well-known, then have

servers sign the result of operations using their private keys. Any sufficiently large

set of signatures that all agree is accepted as a valid certificate. However, this is

a poor solution because it poses a significant key management problem. All clients

must have a trusted certificate that enumerates the public keys of the current set

of servers, and each time the set of servers changes, the old servers must certify the

new ones to the clients. The current server group must be able to prove its authority

to clients that are arbitrarily out of date, which results in unwieldily certification

chains that grow linearly over time. Furthermore, if each certificate is comprised of

a threshold number of signatures from individual servers, the certificates themselves

might be relatively large.

Proactive secret sharing (PSS) and threshold signature schemes can address these

problems. A single public/private key pair is generated by a trusted dealer when the

16

system is first initialized, the public key is published, and shares of the private key

are distributed to the initial set of servers. The servers use threshold signature

schemes [DF91, GJKR96, Lan95] to produce signatures using the shared secret key.

To handle share exposure due to Byzantine faults, the servers execute a share re-

generation protocol, in which a new set of shares of the same secret is generated

and the old shares discarded, rendering useless any collection of t or fewer shares

the adversary may have learned. Hence, PSS solves the key management problem

because there is only one key that never changes; instead, only the sharing of that

key changes over time. The adversary can learn nothing about the key unless it is

able to acquire t + 1 shares before the next share regeneration operation takes place.

1.2 Contributions

This thesis introduces MPSS, a new mobile proactive secret sharing scheme. In

MPSS, as in other proactive secret sharing schemes, servers execute a periodic share

refreshment protocol. Additionally, MPSS allows the shares to be transferred to

a new group of share holders, which may be larger or smaller than the old group,

without revealing any extra information to corrupted nodes. Hence, proactive secret

sharing can be thought of as a special case of MPSS where the old and new groups

are restricted to be identical. This thesis gives an efficient and practical protocol for

MPSS in the asynchronous network setting.

This thesis makes the following major contributions:

• It describes a new technique for carrying out MPSS. Prior schemes were either

limited to ordinary PSS (e.g., [CKLS02, HJKY95, ZSvR05]), or they required

an amount of communication that was exponential in the number of sharehold-

17

ers (e.g., [WWW02, ZSvR05]). Hence, we describe the first practical MPSS

scheme.

• It shows how our MPSS scheme can be extended to support changing the

threshold of faults tolerated from one epoch to the next.

• It describes an efficient way of carrying out the secret resharing, based on the

use of a coordinator that determines the resharing proposals under considera-

tion. This allows us to achieve significantly better performance in the common

case where the coordinator is not faulty.

• It describes a simple extension to the forward-secure encryption scheme of

Canetti, Halevi, and Katz [CHK03] to support identity-based forward-secure

encryption. This extension allows us to improve system performance by en-

abling efficient provable accusations that can be verified by others without re-

vealing secret information. Note that the use of this extension is not required

in order for our basic protocol to work.

• It describes a new correctness condition for secret sharing systems. The condi-

tion is important because it rules out a particularly attractive attack in which

the adversary isolates a node and then, without compromising it, fools it into

revealing its secret information. We also show that implementing this condition

requires the use of forward-secure signing.

A further point is that we show how to use publically verifiable accusations (PVAs)

to increase the efficiency of our protocol. Corrupted nodes can attempt to disrupt

resharing by producing incorrect information; PVAs allow honest servers to prove the

information is incorrect and thus more easily come to agreement on which of their

18

peers have behaved correctly. Verifiable accusations are a general-purpose technique

that may also be applied to other protocols that rely upon Byzantine agreement;

prior work has had to either assume synchrony to implement accusations or avoid

them altogether.

Thesis Outline

The thesis is organized as follows. We begin in Chapter 2 by discussing related work,

including systems we build upon, as well as other proactive secret sharing schemes

and their limitations. Chapter 3 defines and justifies the network model and our

assumptions. Chapter 4 gives an overview of our approach, and in particular de-

scribes the mathematics behind it, and how new shares are computed and verified.

The thesis goes into more detail on our network protocol in Chapter 5, and Chap-

ter 6 describes some important optimizations that improve performance. Chapter 7

presents modifications to the protocol that allow the group size to grow and shrink.

Validation of our approach can be found in Chapter 8, which details correctness con-

ditions, theorems, and proofs. Chapter 9 evaluates the performance of our scheme

and analytically compares it against several other techniques. Finally, we conclude

in Chapter 10.

19

20

Chapter 2

Related Work

We first briefly mention basic secret sharing and verifiable secret sharing schemes.

Then we discuss proactive secret sharing, which attempts to address the problem that

shares learned by the adversary are compromised, posing a problem for long-lived

systems. However, proactive secret sharing schemes are limited in that they assume

that the set of shareholders remains the same forever. Hence, we discuss mobile

proactive secret sharing schemes that allow the set of shareholders and possibly the

size of this set to change.

In this thesis, t denotes the threshold. That is, in the secret sharing schemes we

discuss, any t shares will not reveal the secret, yet t + 1 shares can be combined to

recover it. We let n denote the total number of shareholders.

21

2.1 Basic Schemes

2.1.1 Secret Sharing

Secret sharing was first proposed by Shamir [Sha79] and independently by Blakley

[Bla79]. These seminal schemes operate under a very simple model: a trusted dealer

has a secret and distributes a different share of that secret to each server. Shamir

demonstrates that a passive adversary who learns up to t shares of the secret gains

no partial information about the secret, yet any t + 1 servers can combine their

shares to recover the secret. Blakley’s scheme makes a similar guarantee, except

that it does not provide perfect secrecy; combinations of t or fewer shares reveal

partial information about the secret, and additional modifications are needed to

ensure perfect secrecy. Shamir’s scheme is based on interpolation of polynomials

over a finite field, whereas Blakley’s scheme encodes the secret as an intersection of

n-dimensional hyperplanes. Each share in Shamir’s scheme is the same size as the

original secret, but shares in Blakley’s scheme are t times as large. Shamir’s scheme is

more widely used because it provides stronger guarantees and better space efficiency

using only relatively simple mathematics. Most of the other schemes discussed in this

paper are based on Shamir’s scheme, which we describe in more detail in Chapter 4.

The PSS scheme of Zhou et al. [ZSvR05] (see Section 2.3.3) is based on a different

secret sharing mechanism that is even simpler but more limited than both Shamir’s

and Blakley’s schemes.

2.1.2 Verifiable Secret Sharing

Feldman [Fel87] and Pedersen [Ped91a] introduced verifiable secret sharing schemes

based on Shamir’s work. These schemes allow shareholders to determine whether

22

the dealer sent them valid shares of the secret, hence allowing them to come to

a consensus regarding whether the secret was shared successfully. In this context,

the dealer is semi-trusted ; it does not reveal the secret, but it might attempt to

fool servers into accepting an invalid sharing of the secret. Verifiable secret sharing

is an important component in many distributed secret sharing protocols involving

untrusted participants because the protocols typically involve each server acting as

a semi-trusted dealer to all of the others.

Feldman’s and Pedersen’s schemes have similar efficiency but slightly different se-

curity guarantees. Feldman’s scheme is perfectly binding (meaning that an untrusted

dealer cannot fool shareholders into accepting an invalid sharing) and computation-

ally binding (meaning that secrecy is subject to computational hardness assumptions

and the amount of computation available to the shareholders). Pedersen’s scheme,

on the other hand, is computationally binding and perfectly hiding. It has been

shown that schemes that are both perfectly hiding and perfectly binding do not

exist. In the context of the proactive secret sharing schemes we discuss, a computa-

tionally unbounded attacker can exploit the VSS to expose the secret regardless of

which choice we make, so the distinction is a non-issue for us. We focus on Feldman’s

scheme because it is notationally easier to describe than Pedersen’s scheme; however,

the systems we describe could be adapted to either scheme. This thesis describes

Feldman’s scheme in more detail in Section 4.

23

2.2 Proactive Secret Sharing

2.2.1 Ostrovsky and Yung

Proactive secret sharing was introduced by Ostrovsky and Yung in [OY91] as a

way to cope with network worms or viruses. In their model, an adversary infects

shareholders at a constant rate, but shareholders are also rebooted and restored to

their correct state at an equal rate. Hence, they assume that in any given time

period (we use the term epoch herein), t < ⌊n/2⌋ shareholders may be faulty. (Note

that this threshold is better than the t < ⌊n/3⌋ typically required for asynchronous

schemes, and is possible only because the correctness of their protocol is based on the

unrealistic synchrony assumption that servers that fail to respond within some fixed

amount of time are faulty.) Shareholders preserve the privacy of the shared secret

by executing a refresh protocol to generate a new sharing of the secret, discarding

their old shares, and using the new shares for the next epoch. In [OY91], the refresh

protocol is implemented via a generic secure multi-party computation protocol on

the existing shares. These multi-party protocols (e.g., [BGW88, CCD88, RBO89])

are general but inefficient. Some are implemented in terms of many instances of

verifiable secret sharing, with the number of rounds proportional to the depth of a

circuit that implements the function to be computed.

This seminal work is important because it was the first to demonstrate that proac-

tive secret sharing is theoretically possible; however, the Ostrovsky and Yung scheme

is infeasible in practice because performing nontrivial calculations using generic se-

cure multi-party protocols is expensive. Furthermore, Ostrovsky and Yung assume

that the network is synchronous, and that secure channels are uncompromised by

24

past corruptions of the endpoints. Practical implementations of secure channels in-

volve secret keys that would be exposed by a compromise of the endpoints, and hence

it is unclear how to recover the node in that case, since the adversary now knows the

node’s secret keys. Also, although they show that “recovery” of a machine’s state

is possible in theory by having all of the other participants construct it via a secure

multi-party computation, it is unclear how one might perform recovery efficiently in

practice.

2.2.2 Herzberg et al.

Herzberg et al. [HJKY95] address the efficiency problem by introducing a protocol

specialized to the problem of generating a new secret sharing. In their scheme,

discussed in more detail in Section 4, participants numbered i = 1 . . . n have an initial

Shamir sharing with polynomial P (i.e., secret s = P (0) with shares P (1) . . . P (n)),

and in the refresh protocol they construct a new sharing P +Q, where Q is a random

polynomial with Q(0) = 0. To handle the case where a previously-corrupted node k

has lost its old share and needs to recover its correct state, other participants execute

a recovery protocol in which each other party i sends P (i) + Rk(i) to k, where Rk

is a random polynomial with Rk(k) = 0. Note that in an asynchronous network,

recovery may additionally be needed for nodes that have never been faulty, simply

because they never received their share from a previous execution of the protocol.

Herzberg et al.’s scheme is difficult to translate into an asynchronous network

protocol partly because it has an accusation/defense phase in which the network is

assumed to be reliable. Each server sends a message to each other server, and if

any senders misbehave, the recipients broadcast accusations against them. Then the

accused servers must broadcast a defense, or else they will be deemed faulty by the

25

other servers. However, in an asynchronous network, we do not know how long it

will take for us to receive defenses from honest servers, and if we establish a specific

timeout, we may spuriously deem honest servers to be faulty if their responses are

delayed. The authors claim in a footnote that for certain encryption schemes such as

RSA, the defense step can be eliminated, which might simplify the translation. How-

ever, we show that the encryption scheme must also be forward-secure. Furthermore,

fixing the problem in an asynchronous network requires a property of the encryp-

tion primitive that is stronger than chosen ciphertext security, and neither RSA nor

RSA under the Fujisaki-Okamoto transformation[FO99] satisfy this property. (More

specifically, in addition to revealing the plaintext, the decryption oracle discloses all

randomness used in the encryption computation.) In Section 6.1, we present a ver-

ifiable accusation scheme that avoids this problem, although our protocol does not

require verifiable accusations.

2.2.3 Cachin et al.’s Asynchronous Scheme

The protocol of Cachin, Kursawe, Lysyanskaya, and Strobl [CKLS02] is the first ef-

ficient scheme in the asynchronous model, also for t < ⌊n/3⌋. Whereas the Herzberg

et al. scheme [HJKY95] computes each new share P ′(i) as a function of a corre-

sponding old share P (i), the Cachin scheme is based on resharing the shares of the

secret and combining the resulting subshares to form new shares of the secret. Their

paper first presents a protocol for asynchronous verifiable secret sharing, then shows

how to build an asynchronous proactive secret sharing scheme by having each honest

shareholder create a VSS of its share. Their VSS scheme is similar to the one of

Stinson and Wei [SW99], and the method of computing new shares from subshares

is based on the linearity of Lagrange interpolation, which was proposed by Desmedt

26

and Jajodia in [DJ97]; however, the authors seem to be unaware of either of these

earlier works.

To handle share recovery for participants who have lost or never received their

shares, Cachin et al. use a two-dimensional sharing P (·, ·) in which shares are one-

dimensional projections P (i, y) and P (x, i); thus, any participant can interpolate its

share given the points of overlap with at least t + 1 other shares. Cachin et al.’s

protocol requires that a significant amount of information be broadcast by each par-

ticipant to each other participant even in the absence of faults, whereas our scheme

achieves better efficiency in the common case by using a coordinator. Moreover, their

protocol does not support changing the set of shareholders.

This thesis describes additional details of the Cachin et al. scheme, primarily in

the context of performance, in Section 9.3.

2.3 Mobile Proactive Secret Sharing

2.3.1 The Desmedt and Jajodia Scheme

Desmedt and Jajodia [DJ97] were the first to propose an extension of proactive secret

sharing, which they call secret redistribution and we call mobile proactive secret

sharing, that allows the set of shareholders, number of shareholders, and threshold

to change. They use the same strategy as Cachin et al. [CKLS02] (albeit in more

generic group-theoretic terms), in which each “old” shareholder acts as a dealer and

shares its share of the secret to the new shareholders. The new shareholders then

combine the subshares from some set of at least t + 1 old shareholders to produce

new shares of the secret. However, their scheme is not verifiable, and thus faulty

nodes in the old group that behave incorrectly can cause the new shareholders to

27

generate an invalid sharing of the secret. Furthermore, their scheme is not formulated

in terms of a concrete network protocol, so it is unclear, for instance, how the new

shareholders are to decide which old shareholders to accept shares from if there are

faulty old shareholders and lost network messages. A direct implementation of their

proposal would only work in a synchronous network with a passive adversary that

can eavesdrop and corrupt nodes, but not generate spurious messages.

2.3.2 Wong, Wang, and Wing Scheme

Wong, Wang, and Wing [WWW02] improve upon Desmedt and Jajodia [DJ97] in two

significant ways. First, they provide a complete, implementable, network protocol.

Second, their scheme is verifiable, so cheating “old” shareholders can’t compromise

the validity of the sharing or prevent it from completing. However, their scheme

relies upon all of the new shareholders being honest for the duration of the protocol,

which is an unrealistic assumption. Furthermore, their scheme is inefficient in the

presence of malicious old shareholders because it gives the new shareholders no way

to determine which old shareholders sent bad information. Hence, they must restart

their protocol potentially an exponential number of times using different subsets of

old shareholders, until a set of entirely honest shareholders is chosen.

2.3.3 APSS

Zhou et al. [ZSvR05] proposed the first technique that works in an asynchronous

model, which they call APSS. Here the threshold is modified from t < ⌊n/2⌋ to

t < ⌊n/3⌋, which is optimal for protocols relying upon asynchronous Byzantine

agreement [CL02].

Their construction is based on an exclusive-or sharing scheme rather than on

28

Shamir’s secret sharing. The exclusive-or scheme is simpler and more limited because

it only supports k-out-of-k sharings, i.e., all the shares are required to reconstruct. In

the exclusive-or scheme, given a secret s, generate random values r1, r2, . . . , rt−1 and

output shares r1, r2, . . . , rt−1, r1⊕ r2⊕ · · · rt−1⊕ s, where ⊕ denotes bitwise

exclusive or. Any combination of k − 1 of these shares is indistinguishable from

random values, but the exclusive-or of all of the shares is s. For every possible subset

of honest shareholders of size t+1, they produce a trivial t+1-out-of-t+1 sharing of

the secret using the exclusive-or sharing; hence, any t+1 shareholders can reconstruct

the secret. However, this construction results in exponentially large shares of the

secret; hence, the communication required to refresh those shares is exponential in

n, the number of shareholders. Chen [Che04] implemented and analyzed their scheme

and found the communication overhead (total data exchanged for all servers) to be

47 kB for t = 1, 3.4 MB for t = 2, 220 MB for t = 3, and unacceptable for larger

thresholds, at least in her implementation. Unfortunately, it seems that in order

to ensure that the probability that the threshold is exceeded is reasonably small in

a real-world system, using realistic assumptions about failure rates, the value of t

must be 6 or greater [Rod]. Hence, to be practical, it seems the protocol must have

subexponential complexity, regardless of optimizations we might be able to apply

to this exponential scheme. Our protocol requires O(n4) bytes of network traffic

with reasonable constant factors. The thesis contains an analysis of performance of

various schemes in Chapter 9.

2.3.4 MPSS — Our Scheme

Our approach uses a simple Feldman VSS, and the technique for generating new

shares is based on the one of Herzberg et al [HJKY95]. However, our protocol as-

29

sumes a much weaker (asynchronous) network and allows the group to change. When

the group changes, it is able to handle a threshold of up to t Byzantine sharehold-

ers in the old group and an additional threshold of t Byzantine servers in the new

group. Furthermore, unlike the scheme of [WWW02], we achieve worst-case polyno-

mial communication complexity, and moreover our protocol has low overhead in the

optimistic case where there are no failures. Our protocol makes use of accusations

as part of choosing the new shares, as does Herzberg et al. However Herzberg et

al. make use of an accusations/defense phase, which require extra interaction that is

undesirable in the asynchronous setting. In particular, when servers receive invalid

messages, they must accuse the sender, and if the sender is honest it must broad-

cast a defense to prove that the accusation is specious. But if message delays can

be arbitrary, it is impossible to ensure that all accusations and all defenses from

honest parties have been received, and hence we cannot tell which servers are mis-

behaving. Our protocol does not require accusations, but as an optimization, this

thesis presents an optional extension called verifiable accusations. Unlike Herzberg

et al.’s accusations, verifiable accusations require no defense phase, as any party can

determine the validity of the accusation.

30

Chapter 3

Network Model and Assumptions

In this section we discuss how we model the network and the power of the adversary,

as well as the cryptographic assumptions our protocols require. Briefly, we assume

that the network is asynchronous and under the control of the adversary. The ad-

versary may adaptively corrupt a limited number of nodes over a certain period we

call an epoch, thereby learning all of their stored information and causing them to

behave arbitrarily badly.

We assume that once corrupted, a node remains corrupted forever. This is rea-

sonable because once the adversary knows a node’s secret keys, it would be unsafe

to consider that node recovered without changing its keys, in which case it would

effectively be a different node.

3.1 Network Assumptions

We assume some number n of nodes S1, . . . , Sn, each of which represents a server on

the network. In a multiparty protocol, these parties send messages to one another.

31

We assume messages are peer-to-peer; there is no broadcast channel. However, the

network is asynchronous and unreliable: messages may be lost or delivered out of

order. To capture the worst possible network behavior, we assume an intelligent

adversary controls all communication in the network: it receives all messages, and

determines what messages are to be delivered, and in what order. Furthermore,

messages may appear that were not purposely sent by any party. To be more precise,

we imagine the following:

Definition 3.1 Asynchronous Network Model.

• Communication takes place via messages sent from one node to another.

• The adversary decides what messages get delivered and when.

• In particular, the adversary may deliver messages out of order or not at all,

and may also create and deliver arbitrary new messages.

These assumptions allow the adversary, for instance, to permanently prevent any

messages from getting through to their recipients, which will allow the adversary to

effectively shut down any protocol.

Our protocol is correct given only these assumptions (and the usual theoretical

assumption that the adversary has a bounded amount of computation available for

constructing spurious messages). However, our protocol will not necessarily termi-

nate given only these assumptions. In order to prove that any protocol terminates,

we will have to assume at least that message delivery is not completely disrupted.

The property we require to ensure termination is called strong eventual delivery.

Definition 3.2 Strong Eventual Delivery. The maximum delay in message de-

livery for messages repeatedly sent from uncorrupted nodes is bounded (with some

32

unknown bound), and while that bound can change over time, it does not increase

exponentially indefinitely.

This definition does not include any mention of messages that are lost entirely. This

is because in practice, lost messages are eventually retransmitted by the sender, so

losses can be modeled as delays.

The basis for our assumption is the BFT agreement protocol [CL02], which re-

quires strong eventual delivery in order to guarantee termination. We invoke BFT

as a subprotocol, so we assume what BFT assumes.

This type of restriction applies to any asynchronous network protocol. In par-

ticular, it has been proven in [FLP82] that it is impossible to ensure both safety

(informally, “bad things don’t happen,” e.g., the protocol does not fail or produce

incorrect results) and liveness (informally, “good things eventually happen,” i.e., the

protocol eventually terminates) at the same time without making a synchrony as-

sumption. Our protocol always provides correctness, but we require a relatively weak

synchrony assumption to guarantee termination. This is in contrast to fundamentally

synchronous protocols such as Jarecki’s [HJKY95] that assume that the network is

reliable, and fail if certain synchrony assumptions are not met.

We call the requisite property for our protocol strong eventual delivery to contrast

it with ordinary eventual delivery, which is the property assumed by other proactive

secret sharing protocols such as the one of Zhou et al. [ZSvR05].

Definition 3.3 Eventual delivery. Messages repeatedly sent from uncorrupted

nodes will be delivered in a finite amount of time.

This definition is weaker and hence one might think that it is more satisfactory than

strong eventual delivery. However, a system that satisfies eventual delivery but not

33

strong eventual delivery has message delays that increase exponentially over time

and indefinitely. Such a system would not be usable in practice.

3.2 Adversary Assumptions

We assume the existence of a powerful active adversary who observes all network

traffic and can corrupt any node in the network at any time (although with some

overall restriction on the number of such corruptions). When the adversary corrupts

a node, all secret information held by that node becomes known to the adversary, and

in particular, the adversary is able to forge messages from that node and decrypt

messages sent to it. Furthermore, since the adversary sees all network traffic, it

can attempt to use secret state stored on corrupted nodes to decrypt messages sent

to those nodes before the corruption took place. Corrupted nodes no longer send

messages according to the protocol, so such a node might, for instance, send messages

to some parties but not others, participate in only particular phases of the protocol,

or send out bad information. Once a node is corrupted, it remains corrupted forever.

Note that the adversary is adaptive, that is, it can make decisions about which nodes

to corrupt at any time, based on information available to it from past corruptions

and from snooping network traffic.

Note that unlike some other protocols such as that of Wong et al. [WWW02], we

do not assume that the new group of shareholders is initially uncorrupted, nor do we

assume that all of the new shareholders will remain uncorrupted during the execution

of the resharing protocol. Since the machines participating in a resharing protocol are

necessarily connected to the network, allowing corruptions in both the new and old

groups is important. We should not assume that any particular networked computer

will be invulnerable to corruption for any amount of time, e.g., the amount of time

34

required to execute the resharing protocol.

3.3 Cryptographic Assumptions

We assume certain cryptographic tools are secure. Specifically, we use the following

primitives:

• A secure cryptographic hash function H that is resistant to second preimage

attacks. In particular, given a message m1, it should be computationally in-

feasible to find a message m2 such that H(m1) = H(m2).

• Feldman’s verifiable secret sharing (VSS) scheme [Fel87]. (Note that we can al-

ternatively use Pedersen’s VSS scheme [Ped91a] with only minor modifications,

despite the fact that the version of our protocol presented here uses Feldman’s

scheme.) These schemes are computationally secure under the discrete loga-

rithm assumption.

• A forward-secure encryption scheme secure against chosen-ciphertext attacks,

such as the scheme of Canetti, Halevi, and Katz [CHK03]. This scheme is

secure under the bilinear Diffie-Hellman (BDH) assumption [BF01].

• A forward-secure signature scheme. In [Kra00], Krawczyk shows how an un-

forgeable forward-secure signature scheme can be constructed from any un-

forgeable signature scheme.

Forward-secure signatures and Feldman secret sharing exist under the discrete

logarithm assumption in the random oracle model, which is implied by the bilinear

Diffie-Hellman assumption. In addition we need to limit the power of the adversary:

35

since we need computational assumptions for our cryptographic primitives, we need

to assume the adversary operates in probabilistic polynomial time (that is, that each

decision it makes is decided efficiently).

Our verifiable accusation scheme, which is an optional extension to our proto-

col that improves performance, requires an identity-based forward-secure encryption

scheme. We describe such a scheme, which is secure under the bilinear Diffie-Hellman

assumption [BF01], in Section 6.1.4. For verifiable accusations, the scheme must also

be secure against a fake key attack (see Definition 3.4). Informally, this says that

an adversary who knows the private key cannot generate a “bad” private key that

works for certain messages but not others. In the scheme we present in Section 6.1.4,

it is infeasible for an adversary who knows the private key to generate a second key

at all.

Definition 3.4 Security against fake key attacks. A public key cryptosys-

tem (E, D) is secure against fake key attacks if, given a properly-generated key pair

(PK, SK) and a ciphertext C = EPK(m), it is computationally infeasible to generate

a fake key SK ′ such that DSK ′(EPK(C)) 6= m with non-negligible probability, but for

a random m′, DSK ′(EPK(m′) 6= m′ with negligible probability.

3.4 Epochs and Limitation of Corruptions

System execution consists of a sequence of “epochs,” each of which has an associated

epoch number. In an epoch e a particular set of nodes, Ue, is responsible for holding

the shares of the secret, and we assume that the adversary can corrupt no more

than a threshold t of the servers in Ue before the end of epoch e. For our scheme,

n = |Ue| = 3t + 1, which is optimal for an asynchronous protocol. In practice, the

36

scheme works with any n ≥ 3t + 1, but n > 3t + 1 does not improve reliability and

only decreases efficiency.

We would like to think of an epoch as a fixed amount of time, for instance, a

day. Given this, the assumption is quite reasonable: although an adversary may

be powerful, we assume it takes enough effort to corrupt a node that the adversary

cannot corrupt too many nodes too quickly. Unfortunately, in an asynchronous

network, epochs cannot be defined in terms of a window of absolute time relative to

an absolute clock (or even bounded by one): rather, they must be defined in terms

of events in the protocol.

We first define epochs locally. Each node in the system has internal events that

define the end of an epoch for that party. Specifically, each party has forward-secure

signature and encryption keys based on epochs, which it discards (along with its

secret shares if it has any) when it moves to the next epoch. We say a party is in

epoch e if it has its epoch e keys but no older keys. Definition 3.5 captures this idea

more formally. Note that the notion of a local epoch is only well-defined with respect

to non-faulty servers, as the state of Byzantine-faulty servers could be arbitrary.

Definition 3.5 Local epochs. A non-faulty server is in local epoch e if it has

secret shares or secret keys associated with epoch e. It leaves epoch e when it wipes

all such information from its memory and is no longer able to recover it.

Globally, for any epoch e, the total number of nodes in Ue that the adversary

may corrupt while they are in a local epoch e′ ≤ e is no more than t. Recall that we

assume that corrupted nodes remain corrupted, thus, if a node is corrupted in epoch

e′ ≤ e it is also corrupted in epoch e.

37

3.5 Our Epoch Definition and the Importance of

Forward-Secure Signatures

It is tempting to define an epoch more simply than we have defined it. We could

limit the adversary to corrupting no more than t nodes up to the point at which all

honest nodes in Ue have left epoch e, as is done by Zhou et al. [ZSvR05]. We call

this the global epoch definition.

Definition 3.6 Global epochs. A global epoch e is the spam of time starting when

the first honest server enters local epoch e and ending when the last honest server

has left local epoch e.

Indeed, since our protocol is guaranteed to terminate given our network assumptions

(Section 3.1) and limitations on corruption, this time period is finite, so the simpler

definition is tempting. However, Definition 3.6 is less desirable than Definition 3.5

because it allows a relatively easy attack where an adversary isolates a node, prevents

it from leaving an epoch, and uses the extra time to corrupt other group members.

Our approach requires forward-secure signing to prevent group members that are

corrupted after they leave the epoch from fooling the isolated node into revealing its

secret.

For the sake of refutation, suppose we implemented our system with ordinary

signatures, rather than forward-secure ones. We show a specific attack, which we

call an isolation attack, that may occur when the adversary is restricted by local

epochs but is ruled out when the adversary is restricted by the weaker global epoch

definition.

Definition 3.7 Isolation attack. Let Ue = {S1, . . . , S3t+1} be the set of share-

holders in epoch e. The attack is as follows.

38

• During epoch e, the adversary corrupts S1 through St, learning t shares. The

adversary also prevents honest server S3t+1 from communicating (which, in the

real world, amounts to a simple denial of service attack against S3t+1.)

• The other 3t replicas execute the protocol without S3t+1, and the transfer to

epoch e + 1 completes. The non-faulty servers in epoch e discard their shares,

except for S3t+1 which is still unable to communicate.

• Subsequently, the adversary corrupts t additional servers in Ue. This is allowed

because the adversary is only restricted to corrupt t servers in local epoch e;

after epoch e has ended locally and those servers have discarded their shares, it

could potentially corrupt all of the servers in Ue given enough time.

• S3t+1, in collaboration with the 2t corrupted servers, now executes another in-

stance of the protocol, but since there are now 2t corruptions, the adversary can

ensure that all of the proposals that are selected (see Section 4.2.1) are known

to it.

• S3t+1 generates share transfer messages for epoch e + 1 based on the bogus

information supplied by the 2t faulty servers, and these transfer messages reveal

S3t+1’s secret share. Since the adversary corrupted S1 through St prior to the

end of epoch e, it had t shares already; hence, with the addition of S3t+1’s share,

it now has t + 1 shares. Thus the adversary learns the secret.

Note that the isolation attack just described is only possible because nodes that

were corrupted after the end of epoch e behave as though they are still in epoch

e. Forward-secure signatures prevent this attack. With forward-secure signatures,

nodes that are uncorrupted when they exit epoch e locally evolve their signature keys

39

so that they are no longer capable of signing new messages associated with epoch

e. Thus, if they later become corrupted, the adversary cannot use them to coerce

isolated servers still stuck in epoch e into revealing their shares.

This attack is prevented by assumption if we use the global epoch definition.

Using this weaker definition, it would not be legitimate for the adversary to corrupt

any additional nodes while node S3t+1 hasn’t finished epoch e. Essentially, the global

epoch definition places additional restrictions on the adversary model by extending

the lifetime of each epoch e as long as there is any correct but isolated server in

epoch e. As far as we are aware, the need for forward-secure signatures in proactive

secret sharing schemes in asynchronous networks has not been observed because most

prior work (e.g., [ZSvR05, WWW02]) has used the global epoch definition, or swept

the entire issue under the rug by assuming more abstract primitives such as “secure

channels” [HJKY95].

3.6 Pragmatics

The above definition will allow us to prove that the adversary is unable to learn

the secret, if more than t shares are needed to do this. However it leaves open the

question of how to ensure this condition in practice.

We assume the system has a “user” who is responsible for making a number of

decisions including (1) the duration of epochs, (2) the threshold t for each epoch,

(3) the membership of the group in each epoch, (4) and the membership of nodes

in the system. All these decisions may be made by a person, or some may be made

automatically by a management system.

Group membership is an especially important decision, because nodes that have

been in the system for a long time are vulnerable to attack by the adversary over that

40

entire time period. One way to minimize the risk of corrupted nodes is to choose

members of the next group to be “fresh” nodes that have joined the system only

recently. An alternative is to keep group membership secret until epoch e is about

to begin, to prevent the adversary from targeting new group members in advance.

The user also needs to decide when to move to the next epoch. This decision is

based on assumptions about the threshold, the vulnerability of the old group, and the

time it will take to make the transition to the new epoch. Note that the transition

can be slow because of network delays that prevent the old nodes from learning that

it is time to end the current epoch and that further prevent the share transfer from

completing.

In practice it isn’t difficult for the user to decide what to do. For example,

the user might choose a system configuration in which nodes are located in secure,

failure-independent locations, so that the probability of more than t failures in a

group in a 24-hour period is acceptably low for some relatively small value of t, e.g.,

t = 3. Then the user might choose to start a new epoch every 12 hours because this

is likely to allow the transition to the next epoch to complete before the old group

has been in operation for a day.

A potential objection to the way we have modeled the adversary is that we

limit the number of nodes the adversary can corrupt per epoch, yet network delays

can cause an epoch to last arbitrarily long. One could argue that a more faithful

model of the real world would have an adversary who corrupts nodes at a fixed rate

with respect to real time. We counter that in the real world, widespread network

outages tend to be relatively short in duration. Hence, it is overwhelmingly likely

that nodes will be able to communicate well enough to complete the protocol in

a reasonable amount of time. In particular, 2t + 1 honest nodes in the old group

and 2t + 1 honest nodes in the new group must be able to communicate; long-term

41

local network outages at the remaining nodes do not pose a problem because we use

forward-secure signatures and our system is secure under the local epoch definition

(see Definition 3.5).

42

Chapter 4

Our Secret Redistribution Scheme

This section describes our redistribution scheme for the case when the old and new

group have the same failure threshold t. We explain how to extend the scheme to

allow the threshold to change in Section 7. Mobile proactive secret sharing consists

of the redistribution protocol along with a protocol for the initial sharing. We focus

on the redistribution protocol, deferring the details of the relatively uninteresting

protocol for the initial sharing to Section 5.

We begin by summarizing the secret sharing and verifiable secret sharing schemes

we use. Then we explain our redistribution technique. The exact details of how nodes

communicate to carry out redistribution are given in Section 5.

4.1 Preliminaries

Here we sketch some of the tools we use in our scheme, but omit a discussion of

components we treat as “black boxes” such as forward secure encryption [CHK03]

and signatures [Kra00]. Section 3.3 enumerates the cryptographic primitives we

43

require and refers to the papers that establish their correctness. We use Feldman’s

verifiable secret sharing scheme [Fel87], based on Shamir secret sharing [Sha79], to

encode the secret. The method we use for deriving a new sharing of the secret is

similar to the one proposed by Herzberg et al. in [HJKY95].

4.1.1 Shamir’s Secret Sharing Scheme

Here we describe Shamir’s secret sharing scheme. All arithmetic in this scheme is

carried out with respect to some finite field Fq, where q is a large prime and a public

parameter to the system. We use s to denote the secret and t to denote the desired

threshold. In order to distribute shares of s so that any group of size t + 1 can

reconstruct s from their shares, while any group of size t or smaller learns nothing,

we use a large prime number q as a parameter. Random values p1, . . . , pt ∈ Fq

are generated such that pt 6= 0 and P is defined to be the polynomial P (x) =

s +
∑t

i=1 pix
i.

Each party is assigned an id number i different from 0; party i’s share is P (i).

With t + 1 points on P , we can recover P by Lagrange interpolation and thus learn

P (0) = s. However, with only t points, there is still a degree of freedom left; therefore,

the secret may be any value.

4.1.2 Verifiable Secret Sharing

In a secret sharing scheme, players receive shares and must trust that their shares

are correct. In a verifiable secret sharing scheme (VSS), additional information is

given that allows each player to check whether or not its share is correct.

To summarize, in Feldman’s verifiable secret sharing (VSS) scheme, the secret

is shared using Shamir’s secret sharing. For the verification information, a cyclic

44

group G of order q and a generator g for G must be given as a system parameter.1

The security of Feldman’s scheme is predicated on the discrete logarithm assumption

(DLA). Briefly, DLA is the generally accepted assumption that given a generator g

for some finite cyclic group and some number c in that group, it is computationally

infeasible to find an x such that gx = c (i.e., it is hard to compute logg c.) Technically

speaking, it may be possible to compute particular bits (e.g., the low-order bit) of

the discrete logarithm [PH78], but it is well known how to circumvent this difficulty

via padding such that the bits of s representing the actual secret are hard-core. In

particular, Long and Wigderson [LW88] show that the high-order bits are secure.

When the Shamir polynomial P is generated, “commitments” are given for each

coefficient: c0 = gp0 = gs, and generally ci = gpi. Now note that each party can

compute

gP (i) =
t

∏

j=0

cj
ij ,

and thus check if the share si it receives is equal to P (i) by checking if gsi = gP (i).

(In cyclic group G with generator g and elements x and y, gx = gy if and only if

x = y.) Furthermore, if the discrete logarithm assumption is true, no party i can

learn another party’s share P (j) from the commitment gP (j).

In this thesis we use Feldman’s scheme for concreteness and simplicity of presen-

tation, but note that we could just as easily have used another VSS scheme such

as Pedersen’s scheme[Ped91b]. Therefore, we do not concern ourselves with the

theoretical differences between these schemes, in particular the fact that Feldman’s

scheme is perfectly binding and computationally hiding, whereas Pedersen’s scheme

1This may be accomplished, for instance, by choosing q such that p = 2q + 1 is also prime, and
letting G be the subgroup of Z

∗

p of elements of order dividing q. But any such q, G, and g will do.

45

is perfectly hiding and computationally binding. In any case, it is easy to show

that a computationally unbounded attacker can exploit the VSS to expose the secret

regardless of which choice we make.

4.1.3 Herzberg et al.’s Proactive Secret Sharing

The formula by which a new sharing is derived from the old one in our scheme is

based on the proactive secret sharing scheme of Herzberg et al. [HJKY95], presented

in more detail in S. Jarecki’s master’s thesis [Jar95]. In this scheme, a new set of

shares is generated from the old Shamir share polynomial P by choosing a random

polynomial Q such that Q(0) = 0, that is,

Q(x) = 0 + q1x + q2x
2 + · · ·+ qfx

f

where the coefficients qi are random. Node i’s new share is then P ′(i) = P (i) + Q(i).

This is still a valid sharing of the same secret since P ′ is a randomly chosen polynomial

with constant coefficient s, but all the other coefficients are random and independent

of the coefficients of P .

Herzberg et al.’s scheme also includes a share recovery protocol to allow a previ-

ously faulty node j to recover its share. Share recovery for j is done by choosing a

random polynomial Rj such that Rj(j) = 0. Each other node i sends P (i) + Rj(i) to

node j. Node j then reconstructs the polynomial P + Rj by Lagrange interpolation

and evaluates it at j to obtain its share P (j) + Rj(j) = P (j).

The polynomials Q and Rj are generated in a distributed fashion in such a way

that each participant i gets Q(i) and each Rj(i), but learns no other information

about Q or the Rjs. This generation process involves each node constructing pro-

posal polynomials and sending out points on these polynomials. Then the nodes

46

execute an agreement protocol to determine which proposals are valid. The Q and

Rj polynomials are the sum of the valid proposals. Our protocol generates these

polynomials in a similar way, but using a different agreement protocol and with ad-

ditional considerations to handle changing the group membership; see Sections 4.2.3

and 5.3.

4.1.4 Group Size

Until now, we have discussed resharing schemes with respect to two parameters: t,

the maximum number of shares that may be revealed without exposing the secret,

and n, the total number of shareholders. However, we have not yet discussed the

relationship between t and n.

Herzberg et al.’s scheme assumes an active adversary that may attempt to cheat

in order to learn the secret, construct an invalid resharing, or prevent the secret

from being reconstructed. Up to t servers may be corrupted, and the faulty servers

may simply refuse to participate in the protocol. Herzberg et al.’s scheme is based

on Shamir’s secret sharing scheme, in which at least t + 1 nodes are required to

reconstruct the secret (or else the t faulty shareholders could reconstruct). Hence,

Herzberg et al. require n ≥ 2t+1 to ensure that at least t+1 non-faulty shareholders

are always available.

Our scheme additionally assumes that the network is asynchronous and unre-

liable, that is, that messages may be delivered after some unknown delay or lost

entirely. Thus, if we do not hear from a particular server, we cannot tell whether

that server is faulty, or whether its response has been delayed by the network. We

require n ≥ 3t + 1, with the following justification. Out of 3t + 1 shareholders, the

protocol can only wait to hear from 2t + 1, as the remaining t servers may be slow

47

or faulty and we cannot tell which is the case. Of the 2t + 1 that respond, t may be

faulty, leaving us with the required minimum of t + 1 to reconstruct the secret. In

fact, n = 3t + 1 is the minimum n for any protocol that requires Byzantine agree-

ment in an asynchronous network [CL02]. This issue is further clarified in Chapter 5

where proposal selection and agreement are discussed, and revisited in Chapter 7,

which describes how the threshold can be changed between successive epochs. In this

chapter, we will simply assume there are n = 3t + 1 old shareholders and n = 3t + 1

new shareholders.

4.2 Secret Redistribution

We want to generate new shares for the same secret and move the new shares to a

new group of nodes, which may be completely disjoint from the old ones. Since the

attacker can corrupt up to t in a group of nodes, in this system it can control 2t

nodes between the two groups.

An important point is that Herzberg et al.’s resharing scheme, unmodified, is

insecure when applied to secret redistribution to a new group because it leaks infor-

mation about the new shares to the old group. This is because each member i of

the old group gets a point Q(i) so that it can compute P ′(i) = P (i) + Q(i) and send

it to the new group. Alternatively, we might imagine that P (i) + Q(i) is computed

in the new group, but this would result in the new group learning old shares. In

either case, the result is that the adversary potentially learns up to 2t new shares.

For instance, suppose that t = 1 and that node 2 is corrupted in the old group and

node 3 is corrupted in the old group. The adversary learns P ′(2) and P ′(3) and can

recover the secret.

Our protocol has two groups, an old group of shareholders and a new group,

48

whereas Herzberg et al. have only one group that never changes. As we explain in

the following section, one of the requirements of our protocol is that the members

of the old and new groups have distinct sets of identifiers, provided that they are

distinct nodes. Let Si refer to the ith member of the old group and Tk refer to the

kth member of the new group. Formally, we call the set of identifiers for the old

group {α1, α2, . . . , αn} and the set of identifiers for the new group {β1, β2, . . . , βn}.

Hence, αi is the identifier of node Si and βk is the identifier for Tk, and we have

the restriction that for all i and k, αi 6= βk unless Si is the same machine as Tk.

This notation allows us to refer to both the old and new group members using the

indices 1 through n, even though their identifier sets are disjoint and need not follow

any particular pattern. Hence, in describing our protocol, instead of writing (for

example) Si’s share as P (i) as in Section 4.1.3, we would write P (αi).

4.2.1 Generating New Shares

Our solution, roughly speaking, is to combine the resharing and share recovery into

a single step. Instead of computing P (αk)+Q(αk) in the old group and sending it to

Tk, each old node Si computes P (αi) +
(

Q(αi) + Rj(αi)
)

and sends this point to Tk.

Upon receiving at least t+1 such points, Tk can interpolate to obtain the polynomial

P + Q + Rk, then evaluate this polynomial at βk to obtain

P (βk) + Q(βk) + Rj(βk) = P (βk) + Q(βk) = P ′(βk).

Since Rj is random everywhere except at βk, this polynomial provides the new node

Tk no additional knowledge except P ′(βk). Furthermore, the old nodes learn nothing

about the new share P ′(βk) because each old node only knows a single point on any

given polynomial P + Q + Rk, and this polynomial is random and independent of P ′

49

except at βk. (Recall that we ensure that αi 6= βk for any i, k by requiring that the

old and new nodes use disjoint sets of identifiers.)

The difficulty here is in generating these polynomials Q and Ri in the old group

so that no node knows too much about them; in particular, each old node Sj should

learn only Q(αj) + Ri(αj) for all i. If a node were capable of learning additional

points, an adversary could accumulate t + 1 points and interpolate Q + Ri. Then a

faulty Si could learn share P ′(αi) intended for the new group. Furthermore, nodes

must not be able to learn points on Q individually, because t collaborating faulty

old shareholders could take their t points along with the well-known point (0, 0) to

interpolate Q. They could then add Q(αi) to their old shares P (αi) to obtain points

on P ′, which are only supposed to be known only to new shareholders.

To this end, it is crucial that no old shareholder and new shareholder have the

same identifier. Otherwise Si would be able to learn Q(αj) = Q(αj) + Ri(αj) and

compute P ′(αj) = P (αj)+Q(αj). This point on P ′, combined with the t other points

on P ′ that the adversary learns from corrupting t nodes in the new group, suffice for

the adversary to recover P ′ and hence the secret. Furthermore, clearly no server can

have id 0, since this would imply that its share of the secret is identical to the secret.

In practice, it is easy to ensure that indices between the old and new groups are

distinct and nonzero. One way is to give each server an identifier that is unique

across the entire system. This identifier might simply be a cryptographic hash of the

node’s public key, for instance.

4.2.2 Protocol Sketch

In this section, we give an overview of what information is transmitted between the

old and new groups and how the new shares are constructed and verified. We defer

50

the details of the protocol to Section 5. Here, Si refers to a member of the old group

and Tk refers to one of the new shareholders. As a matter of convention, the index

i denotes a sender in the old group, j denotes a recipient in the new group, and k

denotes a recipient in the new group. Roughly, our protocol proceeds as follows.

1. Proposal Selection. Each party Si creates a random polynomial Qi modulo

q such that Qi(0) = 0, and for each Tk in the new group, it creates a random

polynomial Ri,k modulo q such that Ri,k(βk) = 0.2 Si creates Feldman VSS

commitments for the coefficients of each polynomial, and sends this out along

with its points on the polynomials Qi + Ri,k, for each k, to every other Sj in

the old group. The information about the points is encrypted for its recipient,

and this list of encryptions, along with the verification information, is signed

by Si as Si’s proposal.

A node receiving a proposal determines whether or not the points sent to

it are consistent with the verification information: if they are, the node will

approve of the proposal. In particular, each recipient verifies that the points

it received are consistent with the Feldman commitments, and that these are

commitments to polynomials with the appropriate properties, i.e., Qi(0) = 0

and Ri,k(βk) = 0. The mechanics of this verification procedure are discussed

below.

2. Agreement. The old nodes reach an agreement about a set of proposals, each

proposal from a different sender, and each approved by at least 2t+1 nodes. Let

S be the set of i such that server i’s proposal was one of the agreed-upon ones.

Q(x) is defined to be
∑

i∈S Qi(x), and Rk(x) is defined to be
∑

i∈S Ri,k(x).

2A simple way to generate such an Ri,k is to construct a polynomial R′

i,k(x) = r′i,k,0 + r′i,k,1x +

· · ·+ r′i,k,tx
t with random coefficients r′i,k,0, . . . , r

′

i,k,t and let Ri,k(x) = R′

i,k(x)−R′

i,k(βk).

51

3. Transfer. Each old node i that knows its secret share and approves of all

proposals in the set sends to each new node k the value P (αi)+Q(αi)+Rk(αi).

This is calculated by adding node Si’s share, P (αi), to the sum over Sj ∈ S

of Qj(αi) + Rj,k(αi), which are points Si received from other nodes. Along

with the share, the old node also sends the verification information for all the

polynomials in the proposal set, as well as the verification information for P .

The new nodes check that the points sent to them are properly generated.

To perform this check, each new node Tk needs Feldman commitments to the

old share polynomial P , as well as commitments to Q and Rk. The details

of how this information is generated in each subsequent epoch is discussed in

Section 4.2.3.3. Once Tk has t + 1 properly generated points for the same set

of proposals, it reconstructs the polynomial P + Q + Rk and evaluates it at βk

to obtain its share.

4.2.3 Verifying Proposals

4.2.3.1 Goals of Verification

The first two steps of the protocol outlined above are intended to produce n + 1

polynomials Q, R1, R2, . . . , Rn with particular properties. In particular, we must

have the following properties, despite nodes that attempt to cheat:

Q(0) = 0

∀k Rk(βk) = 0
(4.1)

52

However, any given node Sj in the old group shouldn’t know anything about Q or

any Rk. Sj has just one point on each of the sum polynomials

Q(αj) + R1(αj)

Q(αj) + R2(αj)
...

Q(αj) + Rn(αj)

To ensure that the required properties hold for Q and all Rk, we ensure that these

properties hold for all of the contributions in the agreed-upon set S in step 2, i.e.,

∀i ∈ S







Qi(0) = 0

∀k Ri,k(βk) = 0
(4.2)

Since, for instance, Q is a sum of the chosen Qis, if all of the Qis have a zero at 0,

then so does Q. (A further point is that if the unconstrained coefficients of at least

one of the Qis is random and independent of the other polynomials, then Q will be

random and independent of the other Qis. But this property is guaranteed assuming

at most t failures and |S| > f , so we need not attempt to verify the randomness of the

proposals received.) Thus, the problem is reduced to arranging so that each Sj can

verify that each Si’s proposal is properly formed, i.e., Sj can determine whether the

proposal satisfies the equations above. As we discuss in chapter 5, the agreement in

the second step of the protocol outlined above is carried out in such a way that only

nodes that sent well-formed proposals to 2t+1 nodes (possibly including themselves)

are included in S.

53

4.2.3.2 Mechanics

In the first step of the protocol, each old node Si produces a set of polynomials

Qi(x) = qi,1x + qi,2x
2 + · · · + qi,tx

t

Ri,1(x) = ri,1,0 + ri,1,1x + ri,1,2x
2 + · · · + ri,1,tx

t

...

Ri,n(x) = ri,n,0 + ri,n,1x + ri,n,2x
2 + · · · + ri,n,tx

t.

Then Si sends to Sj the points 〈p1, p2, . . . , pn〉, where pk = Qi(j) + Ri,k(j), along

with Feldman-style commitments to each of the constituent polynomials. The com-

mitment matrix generated by Si has the form

















gqi,1 gqi,2 . . . gqi,t

gri,1,0 gri,1,1 gri,1,2 . . . gri,1,t

...

gri,n,0 gri,n,1 gri,n,2 . . . gri,n,t

















.

Sj now has to verify two things: first, that Si’s proposal (namely Qi and all the

Ri,k) satisfy equations 4.2 according to the commitments provided, and second, that

the points Si received are consistent with those commitments. The first property

ensures that Si generated its polynomials correctly, and the second property is used

to verify that Si is presenting points on the same polynomials to all the other nodes

in the group.

54

As in Feldman’s scheme [Fel87], we apply the homomorphic properties of expo-

nentiation to verify these properties. For the first property we have:

0 = Ri,k(βk) ⇐⇒ g0 = gRi,k(βk)

= g
Pt

l=1
ri,k,tβk

l

=
t

∏

l=1

(gri,k,t)
βk

l

(4.3)

Similarly, after some simple algebra, we derive the check equation for the second

property:

pk = Qi(αj) + Ri,k(αj) ⇐⇒ gpk = gQi(αj)gRi,k(αj)

=
t

∏

l=0

(gqi,tgri,k,t)
αj

l (4.4)

Of course, the gqi,t and the gri,k,t values are not computed by Sj; rather, they are

provided as part of Si’s commitment matrix. Note also that gqi,0 isn’t part of the

matrix provided by Si. This is because we require that Qi(0) = 0, so gqi,0 must be 1.

4.2.3.3 Computing Verification Information for the New Secret

As mentioned in Section 4.2.1, each node Tk in the new group needs to obtain valid

commitments to the old share polynomial P , as well as commitments to Q and Rk

in order to determine which of the points it receives from the old group are valid.

These commitments can be computed by each member of the old group and sent to

Tk, and Tk will accept any t + 1 identical sets of commitments as valid. (In practice,

Tk might instead receive one copy of the commitments and t signatures that attest

to the authenticity of that copy.)

55

Given a point νj,k received from Sj, Tk uses the commitments to check that

νj,k = P (αj) + Q(αj) + Rk(αj).

The mathematical technique is the same as discussed in the previous section in the

context of verifying proposals in the old group and not repeated here. Instead we

describe how the commitments to P , Q, and Rk are generated within the old group.

Let

P (x) = s + p1x = p2x
2 + · · · + ptx

t

Q(x) = q1x + q2x
2 + · · · + qtx

t

Rk(x) = rk,0 + rk,1x + rk,2x
2 + · · · + rk,tx

t

Recall from step 2 of the protocol sketch that Q(x) =
∑

i∈S Qi(x) and Rk(x) =
∑

i∈S Ri,k(x), where S is the set of agreed-upon proposals. Therefore, for 1 ≤ l ≤ t

and 0 ≤ m ≤ t we have ql =
∑

i∈S qi,l and rk,m =
∑

i∈S ri,k,m. Each member

of the old group has commitments to the coefficients of each Qi and Ri,k, namely,

gqi,1, . . . , gqi,t and gri,k,0, . . . , gri,k,t. We compute the commitments to Q and Rk, specif-

ically gq1, . . . , gqt and grk,0, . . . , grk,t, using the homomorphic properties of exponen-

tiation:

gql =
∏

i∈S gqi,l

grk,m =
∏

i∈S gri,k,m

As for the commitments to P , we assume that the dealer provides these in the first

epoch. In subsequent epoch, commitments to the new share polynomial are computed

from the commitments to the old share polynomial as well as the commitments to

Q. Since P ′(x) = P (x) + Q(x), we have for all 1 ≤ l ≤ t, p′l = pl + ql. Therefore,

gp′
l = gplgql.

56

Chapter 5

The Redistribution Protocol

This section gives the details of the communication in the redistribution protocol

described in Chapter 4. The protocol works in an asynchronous, unreliable network;

nodes resend messages to ensure delivery.

There are three phases to the protocol: proposal selection, agreement, and trans-

fer. Chapter 4 gave an overview of each of these phases and formulated the math-

ematics behind the construction and verification of new shares. In this section, we

describe in detail what messages are exchanged and how the protocol proceeds.

All information sent in these protocols is encrypted for the recipient using a

forward-secure encryption scheme so that an attacker cannot decrypt a message sent

in epoch e without corrupting its recipient before the end of local epoch e (see

Definition 3.5). In addition, messages are signed using forward-secure signatures.

Improperly signed messages are discarded.

Our system makes use of BFT [CL02] to carry out agreement. As in BFT, at

any moment one of the group members is the coordinator (also called the primary).

The coordinator directs the activities of the group, e.g., it chooses the order of the

57

operations that clients ask the group to carry out. Some communication steps in

which each node sends a different message to each other node that would otherwise

be point-to-point are directed through the coordinator so that recipients have a

consistent view of who has spoken so far.

However, we cannot assume that the coordinator is behaving correctly, as this

would make it a single point of failure. To address this potential problem, the

protocol proceeds in a series of views. All messages have an associated view number.

The other nodes watch the coordinator, and if it is not behaving properly, they carry

out a view change protocol that increments the view number, selects a different

node to be the coordinator, and starts a new instance of the protocol using the

new view number. Nodes are chosen to be the coordinator in subsequent views in

a deterministic (round-robin) fashion, so that the attacker is unable to control this

choice. Our protocol ensures that if the coordinator is behaving correctly as far as

other nodes can tell, then the worst it can do is prevent the protocol from completing

in the current view. Hence, nodes will initiate a view change after a timeout, and

this timeout increases exponentially with each subsequent view (and hence the strong

eventual delivery assumption, Definition 3.2). Details of the view change protocol,

as well as further justification and proofs of correctness for this approach, can be

found in [CL02] and we do not reproduce them here.

Note that epoch numbers are different from view numbers, although each message

is labeled with both an epoch number and a view number. Each epoch is identified

with a particular set of shareholders and a particular sharing of the secret s. Our

share redistribution protocol is used to transition from one epoch to the next. In-

ternally, the protocol proceeds through a sequence of views, each with an associated

coordinator, until it selects a coordinator that behaves honestly and the protocol

completes.

58

In BFT, there is a single Byzantine fault tolerant group whereas every time our

protocol is run there are two groups of interest: the old shareholders (in epoch e) and

the new shareholders (in epoch e + 1). Each of these groups can perform agreement

with up to their respective threshold number of faults in each group, so the execution

of the protocol could be coordinated via either group in principle. In our protocol,

the coordinator is always chosen to be a party in the old group because this is where

most of the communication and all of the agreement takes place. Once the members

of the old group have agreed to a set of valid proposals from each other, each honest

node in the old group can independently send data to the members of the new group

to allow the members of the new group to compute their shares, and no agreement

operations are needed in the new group.

To run the protocol, each party needs to have a signature and encryption key

pair to ensure that messages sent between parties are authentic, non-malleable, and

secret. Both the signature scheme and the encryption scheme will need to be forward-

secure. Specifically, we suggest the use of the Bellare-Miner forward-secure signa-

ture scheme [BM99] and the Canetti-Halevi-Katz forward-secure encryption scheme

[CHK03]. Forward-secure encryption is needed because the adversary may save net-

work messages from past epochs, then later break into more than the threshold

number of nodes from a past epoch, revealing the state of those nodes, including

encryption keys; forward-secure encryption schemes prevent the adversary from de-

crypting these past messages. Forward-secure signatures are needed to prevent cor-

rupted nodes from sending authentic-looking messages to isolated but correct nodes

that still believe they are in some past epoch. When we discuss our optional veri-

fiable accusation scheme in section 6.1, we describe additional requirements on the

encryption scheme if verifiable accusations are used. However, note that verifiable

accusations are merely an optimization.

59

We assume the epoch number is e (“the current epoch”), and that each party is

aware of the nodes in epoch e and e + 1 (“the next epoch”), as well as the public

encryption and signature keys of every node. We define te as the maximum number

of faults tolerated in the epoch e and ne = 3te +1 as the number of shareholders com-

prising epoch the epoch e. The set of shareholders for epoch e is {S1, . . . , Sne
}, the

shareholders for epoch e + 1 is {T1, . . . , Tne+1
}, and the unique identifiers associated

with these nodes are {α1, . . . , αne
} and {β1, . . . , βne

}, respectively. As shorthand, t

and n refer to the current epoch e, that is, t = te and n = ne. We assume every

message a node sends is signed under its signature key.

Messages are ignored if they aren’t properly signed by the sender or have the

wrong format. The latter check includes checking embedded messages (e.g., messages

from the coordinator that contain 2t + 1 messages from other nodes): a message is

ignored if any embedded messages aren’t properly signed by their sender or are in

the wrong format. Recipients also ignore messages that have incorrect view or epoch

numbers.

5.1 BFT

Our protocols make use of Castro and Liskov’s BFT algorithm [CL02], which pro-

vides asynchronous agreement with t < ⌊n/3⌋ Byzantine faults. In particular, given

proposals (explained in Section 5.3.1) from at least 2t + 1 servers and a sufficient

number of votes on those proposals, our redistribution protocols choose a subset of

those proposals and invokes BFT so that all honest servers agree on which proposals

to use. BFT ensures that if at least 2t + 1 servers (of whom at least t + 1 are hon-

est) agree on a set of proposals, then no honest server will complete the agreement

protocol with a different set. This subsection briefly reviews the operation of BFT,

60

but for full details refer to Castro and Liskov [CL02].

BFT provides liveness (it terminates with 2t+ 1 servers reaching agreement) and

safety (honest servers that complete the protocol all agree on the same proposals)

subject to t < ⌊n/3⌋ faults and the strong eventual delivery assumption described in

Definition 3.2. Thus, secret redistribution requires these assumptions as well. As in

our protocol, BFT uses a primary to coordinate the activities of the group, and the

primary in BFT is the same server as the coordinator in our scheme.

BFT executes in three phases. In the first phase, the primary broadcasts a

PRE-PREPARE message, which contains the value to be agreed upon—a set of votes,

in our case. In the next phase, each server, upon receiving a PRE-PREPARE or

PREPARE message, broadcasts a PREPARE to all other servers if it is willing to

accept the proposed value. In [CL02], servers will accept the value if it is properly

signed by a client, whereas in our system, servers accept a proposal set as valid if

it contains the requisite number of signed proposals and votes on those proposals.

Finally, upon receiving 2t+1 PREPARE messages, each server broadcasts a COMMIT.

The protocol commits locally at a server when that server receives 2t + 1 COMMIT

messages.

If the primary is faulty, a view change protocol is executed, which starts the

protocol over again with a new primary in a new view. Views are contained within

epochs; BFT may progress through multiple views in attempt to reach agreement and

transition from epoch e to epoch e+1. Any node may request a view change when it

believes the primary to be faulty or reaches a timeout. If recipients of this message

agree with the view change they send an acknowledgement to the new primary, which

generates a view change certificate consisting of t + 1 acknowledgements. When a

node sends a request for a view change and the recipient has already seen a commit

message from the primary, it forwards the primary’s commit message to the requester.

61

Timeouts increase exponentially with each successive view to match the synchrony

assumptions described in Chapter 3.

5.2 The Share and Recon protocols

For the sake of completeness, we give a Share protocol that can be used by a dealer

to establish the initial sharing of the secret, and a Recon protocol that can be used

by the shareholders to reconstruct the secret. Both of these protocols are quite

straightforward and of relatively little practical interest, but they demonstrate that

our MPSS is a valid secret sharing scheme. In practice, rather than reconstruct

the secret, one would like to use it to carry out a secure multiparty computation,

e.g., signing or decrypting messages [DF91, GJKR96, Lan95]. Our protocol uses a

linear sharing, which these schemes typically assume.

In the Share protocol, we assume there is a special party, known as the dealer,

that has the secret s as an input. The dealer generates the random polynomial P by

generating random values p1, . . . , pt modulo q, and makes a list of shares, P (i) mod q

for each 1 ≤ i ≤ t, as well as commitments gs, gp1, . . . , gpt modulo q. The dealer

encrypts each share P (i) using encryption key PKi, and the collection of shares is

signed with the dealer’s signing key. The dealer then broadcasts this complete list of

encrypted shares, along with all the commitments, to every member Si in the initial

group. Nodes other than the dealer will continually request their share from all other

nodes until they receive it. Nodes who have received the message from the dealer

will forward it to any nodes that request it.

In the Recon protocol, every node sends its share to every other node. Each node

receiving a share checks whether it is valid by using the Feldman commitment to that

share. Once a node receives t + 1 valid shares, the node reconstructs the polynomial

62

P using Lagrange interpolation and computes the secret, namely, P (0).

5.3 The Redist0 protocol

This section describes Redist0, the protocol for performing secret redistribution when

the threshold does not change. We describe Redist−1 and Redist+1, which handle

decreasing and increasing the threshold, respectively, in Chapter 7.

5.3.1 Redist0 Messages

Before delving into the details of the protocol itself, we discuss the messages used by

Redist0. The protocol uses four basic messages in normal case operation, plus one

additional message to handle the case where a non-faulty node in the current epoch

does not have its share (e.g., because it was unable to communicate earlier.) BFT,

which we invoke as a subprotocol, uses three additional messages, plus several others

to handle view changes, which we do not list here. Section 5.1 gave a brief overview

of BFT.

All messages are acknowledged (although the acknowledgement messages are not

shown here) to cope with network packet loss. Honest servers continue to retransmit

messages until either they receive an acknowledgement from the recipient or the

recipient no longer needs to receive the message (e.g., because the protocol terminated

or advanced to a later phase). As in BFT, acknowledgements may be authenticated

to prevent a denial-of-service attack in which spoofed acknowledgements are injected.

Figure 5-1 describes the format of all of the messages. We use a bold teletype
for literals and the metalanguage, a bold serif font for data structures and vari-

ables, and a plain serif font for functions. Node i’s public and private encryption

63

Proposali,j = [EncPKe,j
(Qi(αj) + Ri,1(αj), . . . , Qi(αj) + Ri,n(αj))℄

CommitmentF = [gf0|0...0, gf1|0...0, . . .℄ where F (x) = f0 + f1x + · · ·

(a) Common data structures

MsgProposali =[proposal, epoch#,proposali,1, . . . ,proposali,n,
commitmentQi

, commitmentRi,1
, . . . , commitmentRi,n

℄SKs,i

MsgProposalSet =[proposalset, epoch#,view#, ∀i ∈ SA msgproposali℄SKs,coord

where SA is the set of nodes whose proposals were received by the coordinator

MsgProposalResponsei =[proposalresponse, epoch#,view#,BadSet, H(msgproposalset)℄SKs,i

where BadSet is the set of the identifiers of all the proposals Si claims are invalid
MsgNewPolyj =[newpoly, epoch#,

EncPKe,1
(P (j) + Q(j) + R1(j)), . . . , EncPKe,n

(P (j) + Q(j) + Rn(j)),
commitmentP+Q+R1

, . . . , commitmentP+Q+Rn
℄SKs,j

MsgMissingSharei =[missingshare, epoch#℄SKs,i

(b) Protocol messages

Figure 5-1: Message Formats for the Unmodified Redistribution Protocol

64

keys are denoted by PKe,i and SKe,i, respectively, and i’s signing keys are PKs,i and

SKs,i. The notation [message℄κ denotes the message message concatenated with

Sigκ(message).

Two common data structures, Proposali,j and CommitmentF , are shown in

Figure 5-1(a). These structures contain the proposal points and commitment matri-

ces described in Chapter 4, for each node’s proposal. As in Chapter 4, αj denotes

node Sj’s unique identifier, Qi and the Ri,ks are Si’s proposal polynomials, g is a

group generator, and F is any polynomial.

Recall that the 0-padding at the end of each exponent in the commitment vector

is needed because an attacker may be able to compute the low-order bits of the

exponents (and hence the shares of the secret) from the commitment vector, since

we are using Feldman VSS[Fel87]. However, the high-order bits are provably secret

under the discrete logarithm assumption.

We briefly describe the purpose and contents of the messages here, but defer de-

tails to Section 5.3.2. The MsgProposali message contains node Si’s proposals for

all other shareholders, along with commitments to the coefficients of the correspond-

ing polynomials. The MsgProposalSet is a set of 2t + 1 or more MsgProposals

collected by the coordinator. Nodes vote on which of the proposals sent by the co-

ordinator are valid by sending a MsgProposalResponse, which enumerates the

proposals that the sender believes are invalid. The response contains a hash of the

coordinator’s original MsgProposalSet to ensure that the coordinator is unable to

cheat by sending different proposal sets to different nodes.

To perform share transfer to the new group, nodes in the old group send a

MsgNewPoly message to the new group. Each MsgNewPoly message contains

information for all members of the new group so that any t + 1 such messages gen-

erated by honest nodes allows any node in the new group to compute its share. The

65

contents are encrypted appropriately, so that the private key SKe,k is required to

decrypt the data that is used to compute Tk’s share. If some members of the new

group receive their shares but others do not, the ones that are missing shares use

MsgMissingShare messages to request the needed MsgNewPoly messages from

the rest of the group.

In Section 6.2 we describe modifications to the message format whereby we hash

and sign particular message components in a different manner to increase efficiency.

5.3.2 Redist0 Steps

The following are the steps in the Redist0 protocol.

1. Proposal Selection.

(1a) Each node Si in the old group generates a random degree-f polynomial Qi

such that Qi(0) = 0. It also generates n random polynomials Ri,1, . . . , Ri,n

such that Ri,k(βk) = 0, as described in Section 4. These polynomials have

the form

Qi(x) = qi,1x + qi,2x
2 + · · · + qi,tx

t

Ri,1(x) = ri,1,0x + ri,1,1x + ri,1,2x
2 + · · · + ri,1,tx

t

...

Ri,n(x) = ri,n,0x + ri,n,1x + ri,n,2x
2 + · · · + ri,n,tx

t.

66

Then Si generates a commitment matrix Ci for these polynomials:

Ci =

















gqi,1|0...0 gqi,2|0...0 . . . gqi,t|0...0

gri,1,0|0...0 gri,1,1|0...0 gri,1,2|0...0 . . . gri,1,t|0...0

...

gri,n,0|0...0 gri,n,1|0...0 gri,n,2|0...0 . . . gri,n,t|0...0

















Finally, Si uses these polynomials to generate a MsgProposali, which

it broadcasts to all other servers in the old group. This signed message,

detailed in Figure 5-1, has a proposal tag, the current epoch and view

numbers, the proposals for all the other nodes in the old group encrypted

with their respective public keys, and the commitment matrix.

(1b) The coordinator collects properly signed and well-formed MsgProposals

from at least 2t + 1 distinct nodes (possibly including itself). To check

that a message is well-formed, the coordinator checks the signature, the

message format, and that the commitments prove that the proposed Qi

and Ri,k polynomials have the requisite properties. Details of this verifi-

cation step are found in section 4.2.3. We are guaranteed to receive 2t+ 1

well-formed proposals because there are n ≥ 3t + 1 nodes and at most t

of these are faulty. For each Sj in the old group, the coordinator sends a

MsgProposalSet message containing the proposals it collected.

(1c) If some node Sj receives a MsgProposal or MsgProposalSet and does

not know it’s own share, it broadcasts a MsgMissingShare message.

Each Si that receives a MsgMissingShare message responds by sending

Sj all of the MsgNewPoly messages Si received in the previous epoch,

as explained in step (3b). These messages allow Sj to construct its share.

67

This extra step is sometimes needed because in an asynchronous network,

we cannot guarantee that every member of the old group knows its share

from the previous execution of the protocol. In particular, when we begin

Redist0 to move from epoch e to epoch e+1, there may be nodes in epoch e

that don’t have their shares, even though nodes in epoch e−1 have each re-

ceived t+ 1 acknowledgements and discarded their information. However,

we can guarantee that there are t + 1 properly generated MsgNewPoly

messages from epoch e−1, which all nodes in epoch e can use to compute

their shares, and each of these messages is stored by at least one honest

node in epoch e. Any node that is missing its share can request the req-

uisite encrypted data to compute its share, which effectively allows us to

assume that all honest nodes know their shares.

2. Agreement

(2a) When node Sj receives the MsgProposalSet from the coordinator, it ver-

ifies the format of every MsgProposal in the set, just as the coordinator

did in step (1b). Sj also checks that the set itself is properly generated,

i.e., it contains at least 2t + 1 MsgProposals, all from distinct nodes in

the old group. If the MsgProposalSet or any of the MsgProposals

it contains are not well-formed, the coordinator is faulty and Sj requests

a view change. If the public information appears to be valid, for each

msgproposali in the set, Sj decrypts proposali,j, then verifies that the

proposal matches the public commitment, as described in section 4.2.3.

(2b) Sj builds a list of all the nodes that sent bad proposals to it, i.e., pro-

posals that didn’t match the public commitments. It sends a signed

MsgProposalResponse to the coordinator with this list. The response

68

Proposal Selection Algorithm

1. d← 0, satisfied← ∅, rejected← ∅

2. props← set of all proposals in MsgProposalSet

3. foreach MsgProposalResponse R from distinct node i

4. if i ∈ rejected

5. continue

6. if ∃j ∈ R.BadSet such that j ∈ props

7. props← props− {i, j}, rejected← rejected ∪ {i, j}

8. satisfied← satisfied − {j}

9. d← d + 1

10. else

11. satisfied← satisfied ∪ {i}

12. if |satisfied| = 2t + 1− d

13. stop

Figure 5-2: Proposal Selection Algorithm

also contains a hash of the coordinator’s MsgProposalSet message to

ensure that a bad coordinator can’t trick honest nodes by sending different

proposal sets to each of them.

(2c) As the coordinator receives MsgProposalResponses, it executes the

Proposal Selection Algorithm shown in Figure 5-2. This algorithm is on-

line; it processes responses as the coordinator receives them, and the co-

ordinator stops waiting for additional responses as soon as the algorithm

terminates. The coordinator verifies that each MsgProposalResponse

is properly signed and well-formed before passing it to the Proposal Se-

lection Algorithm.

The essence of this algorithm is that every time a response from a node

that has not been accused accuses one or more of the remaining proposals,

69

we remove the proposals for both the accuser (if it is still on the props

list in the first place) and one of the accusees, since at least one of these

two is bad. To ensure determinism when multiple accusations against

remaining proposals are available, we always choose the accusation against

the lowest-numbered node in props. We prove in Sections 8.2 and 8.3 that

the termination condition guarantees liveness (i.e., it is always reached)

and also ensures that t + 1 honest nodes are satisfied with the remaining

proposals and there is at least one proposal from an honest node left.

(2d) The coordinator runs BFT [CL02] to attempt to get the other replicas to

agree to the proposal set it has chosen. The ‘value’ that replicas agree to

is the set of proposals selected by the coordinator, along with the list of

MsgProposalResponses it used to do so, in the order the coordinator

processed them. (Since the Proposal Selection Algorithm is deterministic,

the list of responses is sufficient since all correct replicas will compute the

same proposal set.)

Each correct recipient Sj, when asked to agree to this value, executes the

proposal selection algorithm on the list of proposal responses. If the co-

ordinator is non-faulty, then the algorithm successfully terminates on Sj

with the same list of proposals that the coordinator chose, and Sj proceeds

with the agreement protocol. Sj participates in the BFT protocol even

if it believes some of the proposals the coordinator chose are invalid; Sj’s

compliance merely means that the coordinator correctly chose a proposal

set according to the 2t+ 1 or more MsgProposalResponses it received,

which may or may not include Sj ’s response. (Furthermore, Sj will only

agree if the MsgProposalResponses contain identical hashes of the co-

70

ordinator’s MsgProposalSet; this ensures that the coordinator sent the

same list of proposals to all respondents.)

If a view change occurs, the new coordinator must repeat steps (2a)

through (2c) using the set of proposals it collected, but there is no need

to repeat step (1) of rebroadcasting all the proposals.

3. Transfer

(3a) Upon successfully completing the BFT protocol, each old node Sj that is

satisfied with the agreed-upon proposal set sends the appropriate infor-

mation to the new group in the form of a MsgNewPoly message. The

MsgNewPoly message contains 3t + 1 points, one for each of the mem-

bers of the new group, each encrypted for epoch e + 1 with the respective

recipient’s public key.

Note that (unless our optional verifiable accusation scheme is used) not all

non-faulty Sjs will necessarily be able to participate in this step, because

the proposal set chosen by the coordinator might contain proposals that Sj

found to be invalid. However, the proposal selection algorithm guarantees

that at least t + 1 honest nodes are happy with the selected proposals,

and this is enough for the new shareholders to compute their shares.

As soon as an honest Sj has generated its MsgNewPoly messages for

the new group, it can can discard its share and advance its forward secure

encryption and signature keys. (If it is unable to generate these messages,

it discards its secret information immediately.) Henceforth, an attack on

Sj that results in more than f corruptions in the old group cannot cause

the secret to become corrupted or revealed. However, to ensure that the

71

integrity of the sharing is preserved, Sj must remain correct until step (3c)

to ensure that enough nodes in the new group received its MsgNewPoly

message.

(3b) Each new shareholder Tk receives MsgNewPoly messages from members

of the old group and computes its share. All of the MsgNewPoly mes-

sages from honest Sj ’s contain identical commitments to P + Q + Rk for

each k; hence, the first t + 1 identical commitments from distinct nodes

are the correct ones. As noted in step (1c), Tk retains the MsgNewPoly

messages so that in the following epoch, Tk will be able to send these

messages to other members of the new group that did not receive them.

(3c) Each old shareholder Sj that was able to generate MsgNewPoly mes-

sages may delete these messages after receiving acknowledgements from

t + 1 members of the new group, because the acknowledgements prove

that at least one honest node in the new group got the message. At this

point Sj is no longer needed; if it later becomes corrupted, the new group

will still be able to reconstruct the secret.

72

Chapter 6

Improving the Performance of the

Basic Protocol

Here we present several modifications to our protocol that yield better performance

by reducing the number of rounds of communication and the number of responses

that must be awaited in some steps and by lowering communication cost. Some of

the extensions, such as our verifiable accusation scheme, may be independently useful

in other protocols and come into play again when we discuss reducing the threshold

in Chapter 7.

6.1 Verifiable Accusations

The proposal selection algorithm described above doesn’t check accusations; it simply

acts on them. The logic is that if one node accuses another, one of the two must be

corrupt, so we remove both of them. At termination, the proposal set chosen by an

honest coordinator in our unmodified protocol has the property that it contains at

73

least one proposal from an honest node and at least t + 1 honest nodes are happy

with all the proposals in the set.

Here we describe a slightly different scheme in which accusations can be verified.

The main advantage of this scheme is that the coordinator only requires t + 1 pro-

posals in order to carry out proposal selection, so that the amount of communication

and the message sizes are reduced. Furthermore, we can guarantee that all of the

nodes from which an honest coordinator received a MsgProposalResponse will be

able to use the proposal set that is selected.

Verifiable accusations are a way for other nodes to check the accuser’s claim that

the information sent to it was invalid. The idea is that nodes that receive invalid

proposals in step 1 of the protocol can generate a verifiable accusation, and all other

nodes can examine the accusation and accurately determine whether the accuser or

the accusee is faulty. It is important that the accusation does not reveal any secret

information belonging to honest nodes. However, if either the sender or recipient

of an encrypted message is faulty, it is safe to reveal the contents of the message

because the faulty party may be assumed to be under the control of the adversary,

and hence could have revealed it anyway.

6.1.1 A Straw-Man Scheme

For illustration, we describe a bad scheme that is verifiable, but leaks secret infor-

mation. We later show how to fix the inadequacies in this scheme. The straw-man

proposal is to have the accuser reveal the encrypted and authenticated message it

receives along with its secret decryption key. Other nodes can check accusations as

follows:

1. Verify the signature on the alleged bad message using the accusee’s public key.

74

If the signature is valid, then the message truly came from the sender, and if

not the accuser is faulty.

2. Check that the accuser provided its correct private key for decrypting messages

sent to it. This can be accomplished by encrypting a random message using the

accuser’s well-known public key, then decrypting it with the supplied private

key and comparing the result to the original random message.

3. Decrypt the encrypted contents using the private key provided by the accuser.

If the contents are not in the appropriate format or do not decrypt properly,

the accusee is faulty.

4. Verify that the encrypted contents satisfy the appropriate properties, e.g., the

ones described in section 4.2.3. If so, then the accuser is faulty, and if not, the

accusee is faulty.

In essence, this is the kind of verification procedure we would like to have. Unfor-

tunately, this straw-man scheme forces the accuser to reveal its private key, which

would prevent the accuser from communicating privately with other nodes.

6.1.2 Fixing the Straw-Man Scheme: Forward-secure IBE

One possible fix to the broken scheme just described would be to negotiate sets of

public/private key pairs, with a different key pair between every pair of servers for

every epoch. However, this solution is inefficient because it requires an extra pro-

tocol round for key generation and dissemination. Furthermore, in an asynchronous

network, we can only wait for 2t + 1 out of the 3t + 1 servers to publish their keys,

which means that not all honest servers will be able to communicate. It turns out

that this restriction makes it impossible to ensure that the protocol terminates.

75

A much better solution, and the one we describe in the following pages, is to

parameterize the public/private key pair on the identities of the sender, recipi-

ent, and epoch, instead of distributing new keys for every sender/recipient pair

and every epoch. Forward-secure encryption schemes [CHK03] allow the private

key to evolve over time (e.g., every epoch) such that messages from past epochs

cannot be decrypted using the current epoch key. Identity-based encryption (IBE)

schemes [BF01, CHK03, Sha84] allow for the public key to be parameterized on an ar-

bitrary string (e.g., the tuple consisting of the identities of the sender and recipient).

Hence, our solution is to use an identity-based encryption scheme that is additionally

forward-secure. We give brief definitions of identity-based encryption and forward-

secure encryption (omitting formal statements of what it means for these schemes to

be secure) in Figures 6-1 and 6-2, respectively.

In Section 6.1.4, we show how to construct a forward-secure identity-based en-

cryption scheme by modifying the forward-secure encryption scheme of Canetti,

Halevi, and Katz [CHK03]. This scheme builds forward-secure encryption out of hier-

archical identity-based encryption (HIBE), so retrofitting the forward-secure scheme

to also be identity-based is straightforward.

Security of HIBE (and hence security of verifiable accusations) is predicated on

the bilinear Diffie-Hellman (BDH) assumption [BF01], which our unmodified protocol

does not require. Note that our unmodified protocol does require forward-secure

encryption and signatures, but it does not require that encryption be identity-based.

The rest of this section explains our forward-secure identity-based encryption scheme

and how we use it to implement verifiable accusations.

76

Definition 6.1 Identity-Based Encryption. Identity-based encryption is a tuple
of four algorithms: KeyGen, GetPrivateKey, Encrypt, and Decrypt, which work as
follows.

• KeyGen():
Generate a public key PK and a master secret key SK.

• GetPrivateKey(PK, SK, ID):
For the given public/private master key pair, return a private key kID for the
identity ID. ID can be an arbitrary string.

• Encrypt(PK, ID, m):
Compute the encryption of the message m under public key PK parameterized
by identity ID, and return the ciphertext c.

• Decrypt(kID, c):
Return m, the decryption of the ciphertext c. This operation should succeed if
and only if c is a valid result of Encrypt(PK, ID, m) and k is the output of
GetPrivateKey(PK, SK, ID) for the same PK and ID.

As an illustrative example, suppose we have an email server with a well-known public
key, with the associated private master key SK safeguarded by the ISP. The ISP uses
GetPrivateKey() to generate private identity keys kalice and kbob, which it transmits
securely to users Alice and Bob. Subsequently, anyone can encrypt a message for
Alice using the Encrypt() function given only the email server’s public key and the
string alice. Only Alice and the ISP are able to decrypt this message.

Figure 6-1: Identity-Based Encryption

77

Definition 6.2 Forward-Secure Encryption. A forward-secure encryption
scheme is a tuple of four algorithms: KeyGen, UpdatePrivateKey, Encrypt, and
Decrypt.

• KeyGen(T):
Return a public key PK and an initial secret key SK0 for a forward-secure
encryption scheme designed to operate for a maximum of T epochs.

• UpdatePrivateKey(SKe):
Given the private key for epoch e, return the private key for epoch e + 1. The
inverse operation (computing the key for epoch e from the key for epoch e + 1)
should be infeasible.

• Encrypt(PK, e, m):
Return c, the encryption of m for epoch e.

• Decrypt(SKe, c):
Return m, the decryption of c. The ciphertext c must have been encrypted with
respect to epoch e.

Figure 6-2: Forward-Secure Encryption

78

0 1

0100 10 11

000 001 010 011 100 101 110 111

(a) e = 0

1

01 10 11

010 011 100 101 110 111001

0

00

000

(b) e = 1

0 1

0100 10 11

000 010 011 100 101 110 111001

(c) e = 2

Here, r = 3, and the first 3 epochs are shown. A double circle indicates the identity
used for encryption in the current epoch, and shaded circles indicate state that the
BTE scheme retains during that epoch.

Figure 6-3: Binary Tree Encryption Illustration

6.1.3 Canetti-Halevi-Katz Forward-Secure Encryption

The paper of Canetti, Halevi, and Katz [CHK03] shows how to turn a hierarchical

identity-based encryption scheme (HIBE) into a forward-secure encryption scheme

through the concept of pebbling. A hierarchical identity-based encryption scheme

is simply an ordinary identity-based encryption scheme (see Figure 6-1) with the

additional property that k, the output of GetPrivateKey(PK, SK, ID), can itself

be used as a master secret key for identities “under” ID. For instance, we could

have

kfoo| ← GetPrivateKey(PK, SK, foo|)

kfoo|bar ← GetPrivateKey(PK, kfoo|, bar).

Hence, the holder of a particular private key for a particular identity ID can decrypt

messages for any identities for which ID is a prefix.

Canetti et al describe binary tree encryption, in which an identity is restricted to

be a sequence of 1 or more bits, and a sequence b1, . . . , bk−1 is hierarchically “above”

any sequence that starts with b1, . . . , bk. Given the identity key associated with any

79

node in the tree, it is possible to derive the keys for its children. BTE is used to

create a forward-secure encryption scheme as follows: in epoch e, where the binary

representation of e as a r-bit binary number is e1e2 . . . er for a fixed r, the identity

used for encryption is e1, e2, . . . , er. Initially, the master secret key is kept, but as an

epoch ends, higher-level master keys are replaced by lower-level ones that they can

derive, such that the old epoch key can no longer be derived. Figure 6-3 shows how

an example BTE scheme with r = 3 evolves over the first three epochs. The keys used

for encryption are the leaves of the tree, and in any given epoch, the state retained

makes it possible to derive the keys for all future epochs, but not past epochs. The

number of identity keys that must be stored is O(r) since we need only remember at

most one node per level in the tree. The system supports up to 2r epochs.

6.1.4 Our Forward-Secure IBE Scheme

The scheme discussed above can easily be expanded to allow for identity-based

forward-secure encryption, by using a further level of hierarchy for the identity.

That is, the identity used as input to the BTE is the concatenation of the epoch

e and the identity ID given as input to the identity-based forward-secure encryption

algorithm. The first r levels of the tree encode the epoch number, and the remaining

levels encode ID, as shown in Figure 6-4. Note that the specific secret key for a cer-

tain epoch with a certain identity is not hierarchically “above” any key that would

be used in the future, since it is a leaf; therefore, revealing it exposes only that key

and nothing else.

This scheme is both simpler and less flexible than the forward-secure hierarchical

identity-based encryption scheme of Yao et al. [YFDL04]. The Yao et al. scheme has

higher overhead than ours, but allows for additional flexibility that is not required

80

0 1

0100 10 11

000 011 100 101 110 111001 010

010

010

010
101

1

10

}
} encoding of identity

encoding of epoch

Extending the BTE tree for e = 2 from Figure 6-3(c), we derive the forward-secure
IBE key for e = 2 and identity 5 = 1012.

Figure 6-4: Tree Encoding for Forward-Secure IBE

for our purposes. In particular, they allow a key for identity ID and epoch e to be

evolved into a key for ID and epoch e+1 without the master key for epoch e, whereas

our scheme only allows the master key for the epoch to be evolved. The additional

property they provide is undesirable for our verifiable accusation scheme because

our accusations reveal keys for identities corresponding to nodes that generated bad

proposals, and we would not like the adversary to use these keys to compute keys for

the same identity in future epochs. Strictly speaking, however, we could use their

scheme safely because our threat model assumes that corrupted nodes are always

replaced, rather than being “recovered” in a future epoch while retaining the same

identity.

There is one caveat here: the properties of identity-based encryption assume that

the generator of the master key—the root of the tree—is honest. However, this

should not be a problem for our application: nodes may be corrupted, but they are

not corrupted prior to generating their own master keys, which is an offline operation.

81

6.1.5 Verifiable Accusations from Forward-Secure Encryp-

tion

In an identity-based encryption scheme, each public key is really a master public key,

and can be used to encrypt under any “identity” (that is, any string). The secret

keys for each identity can be derived from the master secret key.

With an identity-based forward-secure encryption scheme, we have sender Si

encrypt the proposals for Sj as EncPKj ,i,e(prop) where PKj is Sj’s public key. The

result is a forward-secure encryption for epoch e, parameterized under identity i. Sj

decrypts this message using a secret epoch key ke,i and to accuse it simply reveals

this key in the response in step 2 of the protocol. Other nodes can use this key to

determine whether Sj ’s accusation is honest or not, but releasing the key doesn’t

help the adversary decrypt messages from other senders to Sj, for either the current

or later epochs.

Note that our use of identity-based encryption is unusual in that messages are

encrypted using the recipient’s public key and the sender’s identity. More familiar

applications of IBE involve senders encrypting messages using a global public key

and the recipient’s identity.

Figure 6-6 shows the new proposal selection algorithm that is used for verifiable

accusations. Whereas the original algorithm potentially required more than 2t +

1 ProposalResponses, the modified algorithm for verifiable accusations requires

exactly 2t + 1 responses, and it is able to guarantee that all the honest nodes that

responded are happy with the final set of proposals it selects.

If accusationj,i is valid, then honest nodes that receive it will be convinced that

Si generated an invalid proposal; if it is invalid, honest nodes will be convinced that

Sj is faulty. All of the following conditions must be met for accusationj,i to be

82

Proposali,j = [EncPKe,j ,i,e(Qi(j) + Ri,1(j), . . . , Qi(j) + Ri,n(j))℄
Accusationj,i =[i,GetPrivateKey(PKe,j, SKe,j, e)℄
AccusationSetj =[a

usationset, ∀i accused accusationj,i℄
MsgProposalResponsei =[proposalresponse, epoch#,view#,

AccusationSet, H(msgproposalset)℄SKs,i

Figure 6-5: Modified Message Formats for Verifiable Accusations

Proposal Selection Algorithm (Verifiable Accusations)

1. responses← 0

2. props← set of all proposals in MsgProposalSet

3. foreach MsgProposalResponse R from distinct node i

4. foreach accusationi,j ∈ R.AccusationSet

5. if accusationi,j is valid

6. props← props− {j}

7. else

8. props← props− {i}

9. responses← responses + 1

10. if responses ≥ 2t + 1

11. stop

Figure 6-6: Proposal Selection Algorithm for Verifiable Accusations

83

considered valid.

• The proposal contained within the accusation is a properly signed and tagged

MsgProposal message from Si.

• When proposali,j is decrypted using the key contained in the accusation, either

the decryption fails, or the decrypted message fails one of the validity checks

described in section 4.2.3.

• When a random message is encrypted using Sj ’s public key under epoch e and

identity i, the ciphertext is correctly decrypted using the key contained in the

accusation. This ensures that the decryption key supplied by Sj is indeed the

correct one.1

Checked accusations ensure that only invalid proposals are discarded in the pro-

posal selection phase. Therefore it is sufficient to start with only t+1 proposals since

one of them must be from an honest node, and that proposal will not be discarded.

Since the random polynomials used to compute the new shares are the sum of all the

accepted proposals, having at least one proposal from an honest node ensures that

the sum is random as well.

Strictly speaking, line 8 of the algorithm is not needed. It says that if we receive

an invalid accusation from Si, we don’t use Si’s proposals, even if those proposals

appear to be valid. However, it seems wise to ignore provably faulty nodes to the

extent possible.

1For this check to be effective, it must be computationally infeasible for faulty nodes to construct
“bad” private keys that decrypt some messages encrypted with their public key but not others; see
Definition 3.4 of Section 3.3. For the Canetti-Halevi-Katz cryptosystem, it is infeasible to find
a second private key that decrypts any message with non-negligible probability. We do assume
that each server’s public key was properly generated when the server was initialized, since most
cryptosystems assume an honest key generator.

84

6.1.6 Problems with Accusations in the Scheme of Herzberg

et al.

Herzberg et al.’s proactive secret sharing protocol [HJKY95] also uses accusations,

but it has several significant differences from our scheme that make it less plausible.

Foremost, their scheme requires verifiable accusations, whereas our scheme merely

uses them as an optimization. Their accusations also require synchrony assumptions

about the network that are too strong to work in practice for unreliable networks

such as the Internet.

In Herzberg et al.’s scheme [HJKY95], each time a server Sj accuses another

server Si, Si must respond with a defense against this accusation. The accusation

itself is merely a cryptographically signed statement of the fact that Sj believes Si’s

proposal to be invalid. The defense is a decryption of the proposal, along with any

information Si used to compute the encryption. (All semantically secure public key

encryption algorithms must be randomized, so this additional information generally

consists of the initialization vector, or random seed, used by the encryption function.)

Anyone can then check whether the message Si claims to have sent encrypts to the

ciphertext Si signed earlier.

This approach does not work when the network is asynchronous. If Si does not

send a defense, it might be faulty, or it might be honest but unable to respond in

time. The coordinator has no way to determine which of these two scenarios occurred,

and therefore Herzberg et al.’s accusation scheme fails. Note that Herzberg et al.’s

scheme was only designed for reliable, synchronous networks, in which the inability

of a node to respond within a fixed time period implies that it has failed.

Herzberg et al. also claim that for some encryption algorithms (in particular,

they cite RSA), the defense step is unnecessary. Presumably the authors refer to

85

the usual hybrid RSA scheme in which the message is encrypted using a symmetric

key encryption algorithm and a random key, then the random key is encrypted using

RSA. Revealing the random key suffices to allow others to decrypt the message

and verify that it corresponds to the signed ciphertext. However, this proposed

scheme is vulnerable to adaptive chosen ciphertext attacks. For example, suppose

Si sends a proposal to Sj , encrypted with Sj ’s public key, and call the ciphertext

c. An attacker A wishing to learn information about the decryption of c sends a

proposal c′ to Sj, which is either identical or similar to c. Sj accuses A by decrypting

c′, which reveals information about c. It has been demonstrated that attacks of

this nature are effective against RSA [Ble98]. Modifications to RSA such as the

Fujisaki-Okamoto transformation[FO99] that add chosen-ciphertext security are not

an effective solution to this problem because they add additional random parameters

to the encryption function that the accusee would need to reveal, and revealing these

parameters would once again make the scheme subject to a chosen ciphertext attack.

6.2 Reducing Load on the Coordinator

Using a cryptographically-secure hash H (e.g., H = SHA256), we can reduce message

sizes significantly, especially in the common case in which very few if any servers are

actually behaving badly. In the original protocol, even though each sever broadcasts

its proposals to other servers in the old group, the coordinator rebroadcasts the

proposals its receives. Doing so ensures that all nodes that can communicate with

the coordinator receive (minimally) the same 2t + 1 proposals, which our protocol

requires, but it also places an undue burden on the coordinator.

Reducing load on the coordinator is important because the coordinator is the

bottleneck in our protocol. The coordinator receives as much data as every other

86

MsgProposalSet =[proposalset, epoch#,view#, ∀i ∈ SA 〈i, H(msgproposali)〉℄SKs,coord

MsgMissingProposalsj =[missingproposals, epoch#,view#,MissingSet℄SKs,j

Figure 6-7: Message Formats using Hashing. Only messages that differ from the
original protocol are shown.

node, asymptotically speaking. In broadcasting all the proposals via point-to-point

links, however, the coordinator sends about a factor of n more data than it receives.

To reduce the amount of data sent, the coordinator can instead send a list of hashes

of the proposals (and commitments) it receives, and recipients can use the hashes to

verify that the proposals and commitments they were sent are identical to the ones

that the coordinator received. This ensures that faulty servers cannot send one set

of proposals to some nodes and a different set of proposals to others.

If there are faulty replicas that send messages to the coordinator but to nobody

else, the burden of sending these proposals still falls on the coordinator as it does in

the unmodified protocol, but in the common case where the number of faults is small,

this optimization is significant. Servers that do not receive proposals included in the

coordinator’s proposal set must request them from the coordinator in the optimized

protocol.

Figure 6-7 shows the protocol messages using hashing to reduce message size.

Instead of including all the proposals in the MsgProposalSet, the coordinator

merely sends a list of the indices of the servers that sent the proposals, along with

hashes of the proposals. When a server Sj receives a MsgProposalSet from the

coordinator, it checks to see if it is missing any of the proposals enumerated in

the MsgProposalSet, and it determines whether some of the proposals it received

don’t match the hashes contained in the MsgProposalSet. Sj waits for additional

87

proposals until the number of missing or mismatched proposals is at most t (since

there are at most t faulty servers, and Sj will eventually hear from all of the non-

faulty ones). Sj optionally delays for a small, fixed amount of time to give honest

servers more time to respond, then if it still has missing or mismatched proposals,

it sends a MsgMissingProposals message to the coordinator with the list of such

proposals. A correct coordinator will respond with the required MsgProposals. If

the coordinator is faulty and sends inconsistent information, or neglects to send to

particular servers, the protocol may not complete in the current view; in this case,

a view change will occur after a timeout, and a new coordinator will be chosen as

usual.

If the coordinator is honest, faulty servers and network delays can force it to

send a large number of proposals. In particular, there are three situations where the

coordinator may have to do additional work:

• Each Byzantine faulty server can request that the coordinator send it up to t

proposals.

• By sending its own proposals to the coordinator and nobody else, a faulty

server can force the coordinator to forward its proposals to the 2t + 1 or more

honest replicas.

• If honest servers do not receive the required proposals from other honest servers

within a fixed amount of time due to message delays, they may need to request

the information from the coordinator instead. Honest servers must do this

because they cannot tell whether they are missing proposals due to some of

the proposers being bad, or because messages from those proposers to them

were not delivered in time.

88

In the optimistic case where these problems do not occur, the coordinator sends a

factor of n less information. However, even in the worst case, the coordinator can be

forced to send no more than t proposals to each server, instead of 2t + 1 proposals

as in the original protocol—a factor of 2 improvement.

89

90

Chapter 7

Changing the Threshold

The protocol as we have described it performs a proactive secret resharing from one

group of size n = 3t + 1 to another group of size n′ = n, where the group members

may be arbitrary. In fact, it is trivial to extend the protocol so that n and n′ can be

arbitrary numbers as long as n ≥ 3t + 1 and n′ ≥ 3t + 1. However, merely changing

the number of shareholders without changing the threshold t is not useful in and of

itself. A secret sharing with n > 3t+1 is less efficient in terms of communication than

a n = 3t + 1 sharing, and less secure because the maximum number of permissible

faults is a smaller fraction of the entire group.

A much more useful operation is changing the threshold itself. That is, we fix

n = 3t+1 and n′ = 3t′+1 but allow for t′ 6= t. In practice, an administrator may want

to change the threshold to adapt to changing security needs and new assumptions

about the reliability of the group members or fate-sharing amongst servers.

Changing the threshold is interesting and requires significant additional effort.

This chapter discusses techniques for increasing and decreasing the threshold.

91

7.1 Decreasing the Threshold

In many situations, it may be desirable to tweak the threshold multiple times over a

small range. For instance, an administrator might temporarily increase the threshold

in response to an Internet worm that may affect a significant fraction of the servers,

then decrease it again when the servers have been patched for that worm. This

section presents a simple technique for handling this situation.

To decrease the threshold by one, we create a virtual server (or an additional

one if previous decreases have occurred). The virtual server’s share is given to all

real servers—effectively making the share public—so that any group of m nodes will

know m + v shares, where v is the number of virtual servers. Thus, if we increase

v by one, the threshold effectively decreases by one. During the protocol, virtual

servers do not generate proposals, but do get shares, check them, and send them to

the next group. These tasks are carried out by the actual servers in a deterministic

fashion so that each honest server can perform the simulation locally.

This scheme works because reducing the threshold from t to t′ = t− v but con-

tinuing to use a degree-t polynomial essentially permits v additional faults. Hence,

if the adversary has t − v shares due to corruptions in the new group, and it addi-

tionally knows the public share for the v virtual servers, it still does not have enough

points to interpolate a degree-t polynomial. However, it is important that virtual

servers “behave” correctly. All v of them must produce the appropriate information

for the next group in the following epoch, because recipients will need t + 1 correct

MsgNewPoly messages and only t′ +1 = t−v +1 honest senders are guaranteed to

be able to produce these. The new groups in subsequent resharings will only accept

MsgNewPoly messages if t′ + 1 members of the old group produce the same mes-

sage according to their local simulations. In essence, virtual servers can be modeled

92

as passive adversaries; they may reveal information, but they behave correctly.

This approach is somewhat unsatisfying theoretically because using this method

to reduce the threshold does not reduce the asymptotic computational overhead

of the protocol. However, it decreases the number of physical servers; eliminates

some of the encryption and signing; and significantly reduces the communication

overhead because the virtual servers do not generate polynomials or commitments,

commitments being the chief source of overhead in our scheme.

7.2 Increasing the Threshold

The protocol from Section 7.1 for decreasing the threshold relies on creating virtual

servers, which act like real shareholders, but are merely simulations. If we have

decreased the threshold using this protocol, we simply decrease the number of virtual

servers when we move to the next epoch, and only resort to one of the protocols

described in this section when there are no more virtual servers. This means that

if the threshold is increased and decreased many times within a fixed range, the

incremental changes are extremely cheap. Below, we describe what to do if there are

no virtual servers.

To perform a resharing to a new group while simultaneously increasing the thresh-

old by c, we need to construct a new sharing polynomial of degree t′ = t + c. This

can be done by having each node generate Q and Rk polynomials of degree t′ = t+ c

rather than degree t. Then the resulting polynomial P ′ = P +Q will also have degree

t′ = t + c.

Transferring the shares is a problem for the original Redist0, however, because

new servers must receive valid points from t + c + 1 old nodes in step (3b) so that

they can interpolate the degree t + c polynomial. However, Redist0 guarantees only

93

that t+1 non-faulty servers in the old group are able to send shares. This is because

the proposal selection algorithm (Figure 5-2) only guarantees that t + 1 non-faulty

servers are able to use the set of proposals it chooses, and some accepted proposals

may be invalid for the remaining t good servers in the old group.

There are several ways of dealing with this problem. To demonstrate some of

the issues, we begin in Section 7.2.1 by showing a simple solution without verifiable

accusations and demonstrate that it does not work even for c = 1. In Section 7.2.2,

we show a two-phase protocol based on Redist0 that overcomes these limitations. In

Section 7.2.3 we describe Redist
ν
+c, which inherits some of the basic structure of the

straw man, but solves the problems of the straw man in a different way. A discussion

of the relative merits of the two approaches can be found in Section 7.2.4.

7.2.1 A Straw Man Protocol

Our first proposal for increasing the threshold from t to t′ = t + c attempts to use

the usual group sizes n = 3t + 1 and n′ = 3t′ + 1 and eschews verifiable accusations.

Before we describe the scheme, we argue that any adaptation of Redist0 that satisfies

these properties is limited to c = 1.

Suppose that the initial proposal set contains t proposals from faulty nodes and

t + 1 proposals from good nodes, but the bad proposals are specially generated to

contain good information, except for a particular set of t − 1 good nodes. Assume

optimistically that the protocol is somehow able to wait for proposal responses from

all non-faulty nodes. Then t + 2 good nodes will accept all the proposals, and

the remaining t − 1 good nodes will accuse the t bad ones. But without verifiable

accusations, each good node can eliminate at most one bad proposal; thus, one bad

proposal will remain, and only t + 2 good nodes will be satisfied with the chosen

94

proposal set. The new group uses a polynomial of degree t + c, so we must choose a

proposal set such that at least t + c + 1 ≤ t + 2 non-faulty nodes in the old group

are able to use. Therefore c ≤ 1.

Our straw man protocol works as follows, using c = 1:

1. Run Redist0, but use proposal polynomials of degree t + 1. As soon as the

proposal selection algorithm terminates, perform Byzantine agreement on the

current proposal set and attempt the share transfer, as in Redist0.

2. If the share transfer cannot complete (i.e., there are only t+1 honest servers that

are satisfied with the chosen proposal set), this means that the coordinator has

yet to hear from t honest servers. Hence, the coordinator can await additional

MsgProposalResponse messages in parallel with the share transfer. If an

additional response is received, the agreement and share transfer steps are

repeated with the new information. The second attempt is guaranteed to

complete because at least t + 2 honest servers will be able to send information

to the new group.

Note that we must perform these two attempts in parallel. If the first share transfer

completes, the coordinator may never receive an additional MsgProposalResponse

because it has heard from all of the honest servers already; it is impossible to tell

which case we are in.

In any secure secret redistribution protocol, there must be a well-defined point

at which honest shareholders in the old group discard their secret information. Oth-

erwise, an adversary who continues to corrupt old nodes after the resharing has

completed will eventually be able to recover the secret. In Redist0, for instance, old

nodes wait until BFT completes, compute messages to send to the new group if they

95

are able to, and then discard their secret information. As we shall see, the pivotal

failure of the straw man scheme is that old nodes cannot tell when it is safe for them

to discard their secret information. We discuss three methods for old nodes to make

this determination, and show that all three fail.

Approach 1. Each old node waits until step (2) of the straw man protocol

completes, and discards its secret information after the second agreement has com-

pleted and the MsgNewPoly messages have been generated. This approach does

not work because we will never reach step (2) if the coordinator already received

responses from all honest nodes in step (1).

Approach 2. Each old node waits only until step (1) of the straw man pro-

tocol completes, and discards its secret information as soon as it has generated its

MsgNewPoly messages for step (1) (assuming it is satisfied with the chosen pro-

posal set). However, the share transfer in step (1) may not succeed because we can

only be certain that t + 1 honest servers are able to use the chosen proposal set, and

t+2 are needed to ensure that the new group is able to reconstruct the secret. If this

happens, the protocol is forced to proceed to step (2), but step (2) cannot complete

because some of the honest nodes have discarded their secret information too early.

The result is that neither the old nor the new groups can recover the secret s.

Approach 3. We can attempt to fix approach 2 by using acknowledgements

from the new group as a basis for deciding when it is okay for servers in the old

group to discard their secret information. Suppose each server Tk in the new group

delays its acknowledgement for as long as possible. In particular, Tk only sends an

acknowledgement upon receipt of t′+1 = t+2 MsgNewPoly messages that contain

valid shares for Tk. However, Tk could have received t + 1 MsgNewPoly messages

from honest servers in the old group, and one MsgNewPoly message from a faulty

server that just happened to send a valid share for Tk. Hence Tk’s acknowledgement

96

only proves that Tk can reconstruct its own share; it does not guarantee that the

MsgNewPoly messages provided to Tk are sufficient to allow other members of the

new group to compute their shares. Even if each server Si in the old group awaits

2t′ + 1 acknowledgements (i.e., the maximum number it can wait for), this only

guarantees that t′ + 1 honest servers in the new group can reconstruct their shares

(since t′ of the acknowledgements may be from faulty servers). However, given that

only t′ + 1 non-faulty servers in the new group know their shares, the next instance

of the protocol that transitions from epoch e + 1 to e + 2 will be unable to complete,

because the precondition we require is that all honest nodes know their shares.

The key insight is that using a protocol structured like the straw man scheme

presented in this section does not work because shareholders in the old group don’t

have enough information to tell when it is safe to discard their secret information.

Two resharings take place in parallel, and while we know that one of them will

complete successfully, do not know which one. If nodes wait for the second resharing

to complete, they may wind up retaining their secret information forever if the first

resharing was successful. If they wait for only the first phase to complete, they may

discard their secret information too soon.

7.2.2 A Two-Step Redist+c

This section describes the Redist+c protocol, which uses two resharings to work

around the problems with the straw man protocol of Section 7.2.1. In particular,

the old shareholders in Redist+c have a well-defined point at which they can discard

their secret information safely, and we remove the restriction that c = 1.

The straw man protocol illustrates that to increase the threshold using a variant

of Redist0, t + c + 1 honest servers in the old group must be able to perform share

97

transfer to the new group. To guarantee that this is possible, we need 3t + c + 1

servers total, of which no more than t are faulty. Thus, we use the following two step

Redist+c protocol:

1. Run Redist0 to perform a resharing from the current group {S1, . . . , S3t+1} to

a new temporary group {S ′
1, . . . , S

′
3t+c+1} that contains c additional members.

The threshold remains unchanged.

2. Run Redist0 in the temporary group to transfer the sharing to the new group

{T1, . . . , T3t′+1}. Modify the protocol to use proposal polynomials of degree

t′ = t + c, and in the proposal selection algorithm, wait for 2t + c + 1 − d

MsgProposalResponses instead of 2t + 1− d. This guarantees that at least

t′ + 1 nodes in the temporary group can perform the transfer.

The first step of resharing to a group of size 3t + c + 1 is identical to exe-

cuting the original Redist0 except that each Si generates c additional polynomials,

Ri,3t+2, . . . , Ri,3t+c+1, and hence it adds c extra points to each proposali,j it sends.

As noted in Section 4.1.4, Redist0 works for any n ≥ 3t + 1, not just n = 3t + 1; we

have thus far fixed n = 3t + 1 merely as a matter of efficiency. The second instance

of Redist0 also uses additional polynomials—3t′ + 1 of them—and the degree of these

polynomials is t + c. But since we have 2t + c + 1 honest servers, of whom t + c + 1

are able to participate in share transfer, we are ensured that the new group will be

able to interpolate a polynomial of degree t + c. Note that the intermediate group

may overlap arbitrarily with the old and new groups.

98

7.2.3 A One-Step Redist
ν
+c

This section describes the Redist
ν
+c protocol, which is based directly on the straw man

protocol of Section 7.2.1, but uses verifiable accusations to solve the problems with

that protocol. Recall that the straw man failed because old shareholders could not

determine when it was okay for them to discard their secret information. Redist
ν
+c

is an alternative to the two-step Redist+c protocol from Section 7.2.2, which worked

around the problems of the straw man by adding more shareholders.

We presented three flawed approaches for deciding when to discard secret infor-

mation in the straw man scheme. Approach 1 illustrated that if old shareholders

wait too long, they may never discard their secrets. Approach 2 showed that with-

out verifiable accusations, the old group alone cannot tell whether the proposal set

it chooses in step (1) is acceptable for t′ + 1 honest new nodes. Approach 3 showed

that even if we rely upon acknowledgements from the new group, not all members

of the new group are able to recover their shares. This section demonstrates that

verifiable accusations overcome the problems associated with approaches 2 and 3.

The lack of verifiable accusations also limited the straw man to c = 1. Redist
ν
+c

also removes this restriction, and allows the threshold to increase by up to c ≤ t. In

other words, we may increase the threshold by no more than a factor of two in each

resharing. Larger increases are not allowed because each member of the new group

needs t′ + 1 = t + c + 1 properly-generated MsgNewPoly messages to compute its

share. We can only guarantee that there are 2t + 1 correct servers in the old group,

so we require that t + c + 1 ≤ 2t + 1.

Redist
ν
+c proceeds in a series of iterations, and up to c + 1 iterations may be

required to complete the protocol. These iterations serve a similar purpose to the

steps in the straw man scheme, but the straw man fixed c = 1, so it had c + 1 = 2

99

iterations. We begin in the same way as the straw man: we start agreement and share

transfer in iteration 0 as soon as the proposal selection algorithm terminates (after

having received at most 2t + 1 responses, since we are using verifiable accusations).

However, the coordinator awaits up to c additional MsgProposalResponses, and

each time it receives an additional response containing a valid accusation, it removes

the accused proposal from the proposal set, increments the iteration number, and

restarts the agreement and share transfer with the amended set.

Each old node erases its secret information and quiesces when it receives receipts

from 2t′ + 1 servers in the new group indicating that those servers successfully com-

puted their shares. As discussed in Section 7.2.1, this only guarantees that t′ + 1

honest servers in the new group know their shares; however, we show that by using

verifiable accusations, we can perform a recovery operation within the new group so

that all honest servers in the new group learn their shares.

7.2.3.1 Redist+c Steps

To make Redist+c work, each of the MsgProposalSet, MsgProposalResponse,

and MsgNewPoly messages, as well as the BFT protocol messages, are annotated

with an iteration# field, which makes messages for each iteration distinct. Itera-

tions are units smaller than epochs but larger than views; each epoch may require

up to c + 1 iterations of agreement in order to complete the transition to the next

epoch, and each iteration may require multiple views. (However, the total number

of view changes due to faulty coordinators over all iterations is still at most t.1)

We also add a MsgCompletionCertificate message, which has the following

format:

1It is possible for additional view changes to occur due to timeouts, but these are infrequent and
have minimal impact in practice. See Section 5.1 for details.

100

MsgCompletionCertificatei =[
ompletion
ertifi
ate, ∀j ∈ SC msgtransfersuccessj℄
A MsgCompletionCertificate is generated by each node Si in the old group. It

is essentially a collection of 2t′ + 1 MsgTransferSuccess messages, all for the same

iteration (namely, the ones in SC , the set of the first 2t′ + 1 such messages received

by Si). This collection proves that the share transfer to the new group was suc-

cessful for that iteration. Note that the MsgCompletionCertificate need not be

signed because the constituent MsgTransferSuccess messages are signed, and any

collection of properly authenticated MsgTransferSuccess messages corresponding

to the same iteration is a valid certificate, even if the collection is assembled by a

dishonest party.

The steps of Redist+c are as follows:

1. Run Redist0 with the verifiable accusation option, but use proposal polynomials

of degree t + c and use several modifications described in the following steps.

Perform agreement and attempt share transfer when the proposal selection

algorithm terminates (modified for verifiable accusations, see Figure 6-6).

2. If the share transfer cannot complete (i.e., there are fewer than t+ c+ 1 honest

servers that are satisfied with the chosen proposal set), this means that the

coordinator has yet to hear from some of the honest servers. The coordinator

awaits additional MsgProposalResponse messages in parallel with the share

transfer. Each time a new MsgProposalResponse arrives that contains a

valid accusation against a proposal in the current proposal set, remove that

proposal from the set and restart the agreement and share transfer steps with

the new proposal set. After at most c restarts, t + c + 1 honest servers will be

satisfied with the proposal set and the coordinator stops processing responses.

101

3. Upon receiving t+c+1 valid MsgNewPoly messages from the old group, all for

the same iteration, servers in the new group generate MsgTransferSuccess

messages, which they broadcast to all members of the old group.

4. When a server in the old group collects 2t′ + 1 valid MsgTransferSuccess

messages, all with identical iteration numbers, the server discards all its secret

share and all other secret information for epoch e. Then it concatenates the

MsgTransferSuccess messages to form a MsgCompletionCertificate and

broadcasts the certificate to all servers in the new group as a BFT request. Each

server in the old group stops executing the protocol as soon as t′ + 1 servers in

the new group acknowledge receipt of the MsgCompletionCertificate.

5. Servers in the new group carry out BFT to agree to some valid completion

certificate out of all the completion certificates they have received.

6. At this point, it could be the case that only t′ + 1 non-faulty servers in the

new group are able to reconstruct their shares; the other t′ of the 2t′ + 1

MsgTransferSuccess messages may have come from faulty servers. If any

server Tk does not know its own share, it executes the Recover protocol (see

below) to recover its share. Upon completion of Recover, Tk learns its share

and broadcasts a MsgTransferSuccess message to all members of the old and

new groups, which ensures that all honest servers in the old group eventually

receives 2t′ + 1 MsgTransferSuccesses, generate completion certificates, and

delete their secret information.

The purpose of the MsgTransferSuccess and MsgCompletionCertificate

messages in Redist
ν
+c is twofold. They tell old nodes when it is safe to throw away

secret information and terminate the protocol, and they allow new nodes to pin down

102

and agree upon a particular resharing that completed. Recall that Redist
ν
+c executes

multiple iterations, each of which is associated with different Q and Rk polynomials.

Distinct iterations produce distinct and incompatible resharings of the secret, and

it is possible for more than one of these iterations to reach the share transfer stage.

When executing Recover and any other protocol that requires the secret shares, it

is important that servers in the new group agree as to which set of shares to use.

Running BFT to choose a valid completion certificate ensures that this consensus is

met.

7.2.3.2 The Recover Protocol

The Recover protocol serves the same purpose for Redist
ν
+c that MsgMissingShare

messages served for Redist0. In Redist0, MsgMissingShare messages were sent

whenever a server Tk in the new group could not participate in some future protocol

because it did not know its share, and honest servers that did have their shares

could simply reply to Tk with the MsgNewPoly messages they received from the

old group. In Redist0, we could guarantee that at least one honest server in the new

group would receive MsgNewPoly messages from t + 1 honest servers in the old

group, and since these messages were generated by honest parties, they contained

the requisite information for every member of the new group to compute its share.

In Redist
ν
+c, this is no longer true; of the t′ + 1 MsgNewPoly messages received by

t′ + 1 honest servers in the new group, some of those messages may be from faulty

servers in the old group that happen to contain valid information for the original

recipients but invalid data for some honest Tk. Hence, simple MsgMissingShare

messages do not work for Redist
ν
+c.

Each server Tk in the new group may initiate the Recover protocol to request

103

ProposalRi,j = EncPKe,j
(R′

i,k(αj))
MsgRecoverk =[re
over, epoch#, sharing#℄SKs,k

MsgProposalRl =[proposalr, epoch#, sharing#,
proposalrl,1, . . . ,proposalrl,n, commitmentRl,k

℄SKs,l

MsgProposalSetR =[proposalsetr, epoch#, iteration#, sharing#,
∀l ∈ SA msgproposalrl℄SKs,k

MsgProposalResponseRl =[proposalresponser, epoch#, iteration#, sharing#,
AccusationSet, H(msgproposalsetr)℄SKs,l

MsgNewPolyRl =[newpolyr, epoch#, iteration#, sharing#, EncPKe,k
(P ′(l) + R′

k(l))℄SKs,l

Messages for Recover are similar to messages for Redist0. However, there is
no BFT subprotocol, view numbers are replaced with iteration numbers, and
MsgProposalRs are much smaller than MsgProposals because they only con-
tain proposals and commitments for Ri,k for one server Tk (the one whose share is
to be recovered) instead of 3t + 1 servers.

Figure 7-1: Message Formats for Recover

that the other servers generate its share for it. Honest servers will execute this

protocol if they are missing their shares and servers in the old group have already

received enough MsgTransferSuccess messages and terminated. Specifically, Tk

starts Recover(k) when it receives a MsgProposalResponse

The messages used by Recover are shown in Figure 7-1, and the Recover(k) pro-

tocol operates as follows:

1. Tk broadcasts a MsgRecover message to all servers in the new group.

2. Each honest Tl in the new group creates a polynomial Rl,k at random, except

that Rl,k(βk) = 0. For each Tm 6= Tk in the new group, Tl generates a proposal

104

Rl,k(βm) and encrypts it with Tm’s public key. It broadcasts a MsgProposalR

message containing a vector of proposals, and Feldman commitments to the

coefficients of Rl,k.

3. Upon receiving t′ + 1 proposals, Tk broadcasts a MsgProposalSetR message

that specifies which proposals to use.

4. Each honest Tl that knows its own share sends a MsgProposalResponseR

message that contains verifiable accusations against any proposals Tl deemed

invalid.

5. Upon receiving t′ +1 valid responses, Tk sends a MsgResponseSetR message

that contains these responses.

6. Each recipient Tl that knows its own share validates the MsgResponseSetR

by running the proposal selection algorithm on the responses. If the proposal

selection algorithm terminates successfully, Tl uses the chosen set of proposals

to generate a MsgNewPolyR message for Tk.

7. When Tk receives valid t′+1 valid MsgNewPolyR messages, it can reconstruct

its share. This may not be possible immediately because the t′ + 1 responses

Tk received in step 5 may contain responses from faulty nodes. Tk also awaits

additional responses, and if it receives any before it is able to interpolate its

share, it starts a new iteration of the protocol beginning at step 5. For each

honest server Tl that has already sent a MsgNewPolyR, Tl will only send a

new MsgNewPolyR if the new proposal set is a subset of the previous one.2

2This property ensures that running multiple iterations does not reveal any additional informa-
tion, because the proposal set in each successive iteration differs from the previous one only in the
removal of invalid proposals, which are already known to the adversary. Honest servers must verify
that this property holds so that a dishonest Tk cannot coerce them into revealing information about

105

Recover is similar to Redist0, but no agreement or view changes take place; Tk acts

as the coordinator, and liveness is subject to Tk being correct. However, since the

whole purpose of running the protocol is to recover Tk’s share, Tk can only hurt itself

by cheating. Because there is no agreement, Tk can coerce different sets of honest

nodes to use different sets of proposals in computing their MsgNewPolyRs, but

honest servers will validate their proposal sets to ensure that each contains at least

one proposal from an honest server. Hence, the point in a MsgNewPolyR from an

honest server will be random, and not known or controlled by the adversary.

Recover is required because the postcondition of Redist+c is that t′ + 1 honest

servers in the new group know their share, but the precondition of the protocol that

does the resharing to the following epoch is that all honest servers know their shares.

Recover bridges the gap by allowing honest servers in the new group to recover their

shares if they didn’t get them from Redist+c, given only that t′ + 1 honest servers in

the new group know their share.

Verifiable accusations are needed to make Recover work because Recover has to

operate even if only t′ + 1 honest servers know their shares. An honest Tk must be

able to choose a proposal set that is acceptable for t′ + 1 honest servers that know

their shares, so in the worst case, the proposal set it chooses must satisfy all of the

honest servers. Recall that the version of the Proposal Selection Algorithm that did

not use verifiable accusations (Figure 5-2) could not guarantee that all honest servers

were able to use the selected proposal set; for each response, the algorithm removes

at most one of the accused servers, even if an honest server accuses multiple bad

proposals. With verifiable accusations, it is possible to arrive at such a proposal set

eventually. Tk may not arrive at this set right away, but as it receives responses from

more servers, Tk continues to refine the set by eliminating bad proposals.

their secret shares.

106

7.2.4 Comparing Redist
ν
+c and Redist+c

We presented two protocols for increasing the group size by c because both Redist
ν
+c

(Section 7.2.3) and Redist+c (Section 7.2.2) have advantages and drawbacks, which

we discuss here.

Redist+c has the undesirable property that the intermediate sharing is a t-out-of-

3t + c + 1 sharing, and the number of faults permitted by this sharing is a smaller

fraction of the total group size than in an optimal t-out-of-3t+1 sharing. For example,

with t = 8, Redist0 is secure when up to 32% of the shareholders are faulty. However,

if we want to increase the threshold from 8 to 15, the intermediate group used by

Redist+7 can have no more than 25% faulty shareholders. Theoretically speaking,

n = 3t + 1 is provably optimal, and Redist+c falls short. In practice, however, the

impact of the intermediate group is minimal because the group is transitory. Servers

in the intermediate group are needed only until second sharing completes, so the

adversary’s ability to corrupt nodes in that group is severely limited.

Redist+c works for arbitrarily large values of c. In practice, however, it is good

to keep c small relative to t because larger values of c imply that the fraction of

allowable bad servers in the intermediate group is smaller. Large increases in the

threshold can be performed incrementally, if needed. In real systems, changes in

the threshold are motivated by changes in assumptions about the security of the

underlying servers, so large variations are expected to be rare in any case.

By contrast, Redist
ν
+c only supports increasing the threshold in increments of

c ≤ t, but it is more appealing theoretically because it uses the optimal group sizes

with respect to the threshold (i.e., n = 3t + 1 and n′ = 3t′ + 1).

From a practical point of view, however, Redist
ν
+c is less appealing than Redist+c

for efficiency reasons. The overhead of Redist+c is comparable to that of simply run-

107

ning Redist0 twice, whereas Redist
ν
+c may require c iterations, and subsequently, up

to 2t instances of Recover may be executed. Furthermore, in Redist
ν
+c, old share-

holders cannot discard their secret information until t′ + 1 servers in the new group

acknowledge that they have received enough information to compute their shares.

In Redist+c, old shareholders can discard their secret information sooner, right when

the second agreement operation completes.

The number of bits sent is the same asymptotically for all the protocols, since

the dominant source of overhead is in broadcasting the proposals; however Redist
ν
+c

can require many more rounds of communication.

108

Chapter 8

Correctness

In this section, we prove the correctness of our scheme. In particular we want to

establish that our scheme satisfies three properties: secrecy (the adversary never

learns the secret), integrity (the secret remains intact from sharing to sharing), and

liveness (the resharing protocol always terminates). We formally define what these

terms mean in the following sections.

Sections 8.1, 8.2, and 8.3 establish that our protocol satisfies appropriate secrecy,

integrity, and liveness properties, respectively. Subsequently, in Section 8.4, we show

that all three of these properties are still satisfied when the verifiable accusations

extension of Section 6.1 is used. Section 8.5 provides a similar justification for the

hashing optimization of Section 6.2. The last three sections of this chapter, 8.6, 8.7,

and 8.8, justify the correctness of our schemes for decreasing and increasing the

threshold.

Our proofs rely on the system model and assumptions described in Chapter 3.

To briefly review, we assume that the network is asynchronous and under control of

the adversary. The system proceeds through a series of epochs, where each epoch

109

is associated with a different sharing of the secret, and our redistribution protocol

is used to transition between epochs. A non-faulty server is in local epoch e if it

has shares or secret keys associated with epoch e, and it discards this information

when it leaves the epoch (see Definition 3.5). Liveness is additionally subject to the

strong eventual delivery assumption. Informally, this is a slightly stronger version

of the assertion that all messages repeatedly sent from correct servers are eventually

delivered (see Definition 3.2 for details). The adversary is computationally bounded,

active, and adaptive; it may corrupt up to t servers in local epoch e. The adversary

learns all secret information on corrupted servers, and these servers may behave

arbitrarily. To get the cryptographic tools we need, we assume the existence of a

secure cryptographic hash function H and that the bilinear Diffie-Hellman problem

is intractable [BF01].

8.1 Secrecy

In this section, we prove that the adversary cannot learn the secret except with

negligible probability, given our system model. We establish that the exchange of

proposals within the old group does not reveal any sensitive information and results

in the selection of Q and Rk polynomials that have the requisite properties, provided

that at least one proposal comes from an honest server. Then we show that trans-

fer to the new group, which also contains corrupted servers, does not leak enough

information to the adversary to reveal anything about the secret. Finally, we show

that the Proposal Selection Algorithm 5-2 does indeed ensure that at least one of

the selected proposals comes from an honest server, which implies that the previous

theorems are true unconditionally.

First, consider the case of a single resharing, from epoch e to epoch e + 1, and

110

• For all corrupted old servers Si, the points P (αi)

• For all k ∈ [1, 3t + 1] and all corrupted old servers Si, the polynomials Qi and
Ri,k (corrupted proposers)

• For all i, k ∈ [1, 3t + 1] and all corrupted old servers Sj, the point Qi(αj) +
Ri,k(αj) (corrupted recipients of proposals)

• For all corrupted new servers Tk, the polynomial P + Q + Rk

• Feldman commitments to all coefficients of each polynomial P , Qi, and Ri,k

Figure 8-1: Information Learned by the Adversary

suppose there are t faulty servers in epoch e and t faulty servers in epoch e + 1.

Recall that we have a degree-t Shamir sharing polynomial P in the old group, sharing

polynomial P ′ = P + Q in the new group. The resharing is based on the sum of

polynomials Q and Rk, which are the sums of proposals from individual nodes in

the old group, i.e., Q =
∑

i∈S Qi and Rk =
∑

i∈S Ri,k. These polynomials have

particular properties, as described in Chapter 4. The information the adversary

learns immediately from its corruptions is summarized in Figure 8-1.

We discount the impact of the Feldman commitments, which allows us to state

theorems based on the remaining information in information-theoretic terms. The

security of Feldman’s scheme can be proven under the discrete logarithm assump-

tion [Fel87], but the guarantees are probabilistic and applicable only to polynomially-

bounded adversaries.

We begin by showing that the adversary cannot learn the polynomials Q or

Rk or the secret s given that the proposal set used contains at least one honest

proposer. Lemmas 8.1 and 8.2 show that the Q and Rk polynomials are random

and independent of any information the adversary learns via corruptions in the old

group, and Lemma 8.3 shows that the Rks are pairwise independent of each other.

111

Of course these properties do not hold at points αj such that Sj is corrupted, but

there are only t such points.

The caveat that makes these lemmas nontrivial is that the adversary may generate

its proposals after it knows t points from each of the honest proposals, corresponding

to the t nodes in the old group it has corrupted. However, each of these proposals is

generated from t independent degree-t polynomials of the form Qi+Ri,k, so knowledge

of t points still leaves one free variable. If the points on Qi and Ri,k were sent

separately instead of as a sum, these lemmas would be false.

Lemma 8.1 If S, the set of proposals chosen by the proposal selection algorithm 5-2

contains at least one proposal from an uncorrupted server, then for any uncorrupted

Sj, Rk(αj) is random and independent of the Ri,k polynomials from corrupted pro-

posers.

Proof. Rk =
∑

i∈S Ri,k, and there exists an i such that Ri,k was generated by an

honest server. This Ri,k will be generated randomly, so the sum Rk will be random,

except that Rk(βk) = 0 for βk 6= αj . But this point is fixed and based on information

the adversary can learn without executing the protocol. 2

Lemma 8.2 If S, the set of proposals chosen by the proposal selection algorithm 5-2

contains at least one proposal from an uncorrupted server, then for any uncorrupted

Sj, Q(αj) is random and independent of the Qi polynomials from corrupted proposers.

Proof. Q =
∑

i∈S Qi, and there exists an i such that Qi was generated by an honest

server. This Qi will be generated randomly. (Qi(0) = 0, but αj 6= 0.) The adversary

may generate the other proposals after the honest proposals have been sent, but it

can only do so with respect to points it knows, i.e., t points on each Qi + Ri,k. But

112

these are pairwise-independent degree-t polynomials, so knowledge of t points still

leaves a free coefficient. Hence the sum Q will be random. 2

Lemma 8.3 If S, the set of proposals chosen by the proposal selection algorithm 5-2

contains at least one proposal from an uncorrupted server, then for any k′ 6= k and

uncorrupted Sj, Rk(αj) and Rk′(αj) are random and independent.

Proof. Each honest proposer Si will construct its proposals such that each pair

(Ri,k, Ri,k′) is random and independent, so this follows immediately from Lemma 8.1.

2

The first three lemmas focused on corruptions in the old group. The following

lemma shows that when we take into consideration information learned from cor-

ruptions in both the old and new groups, the adversary still learns nothing about

Q + Rk. Thus, the points sent to the new group don’t invalidate Lemmas 8.1–8.3.

Lemma 8.4 If S, the set of proposals chosen by the proposal selection algorithm 5-2

contains at least one proposal from an uncorrupted server, then for any uncorrupted

Sj, Q(αj)+Rk(αj) is independent of the information the adversary learns (Figure 8-

1.)

Proof. Q(αj) + Rk(αj) is independent of the proposals by Lemma 8.1, and indepen-

dent of each Q(αj)+Rk′(αj) for k′ 6= k by Lemma 8.3. Si sends P (αi)+Q(αi)+Rk(αi)

to Tk, but even if Tk is corrupted, this reveals nothing because P (αi) is secret and

independent of Q and Rk. 2

Now we are ready to prove the main theorem, which states that the execution

of the protocol, including the combined view of the adversary of the old and new

sharings, does not reveal anything about the secret.

113

Theorem 8.1 If S, the set of proposals chosen by the proposal selection algorithm 5-

2 contains at least one proposal from an uncorrupted server, then the information

the adversary learns (Figure 8-1) is independent of the secret s = P (0).

Proof. The adversary is given t points on P and t distinct points on P + Q (since

we assume αi 6= βk for all i, k). None of these points is at x = 0. Q is random,

except at 0, and by Lemma 8.2, Q is independent of the information the adversary

learns, so these two sets of points are random and indepenent of each other. The t

points on P are independent of P (0) because P is of degree t and hence has at least

one free coefficient, and similarly for P + Q. 2

The information revealed by our protocol is similar to what is revealed in Herzberg

et al.’s [HJKY95] proactive refresh protocol, plus 3t + 1 instances of their recovery

protocol, except that we have combined the steps in such a way that the adversary

cannot learn the polynomial Q. Recall that Q is the polynomial that makes it possible

to map between shares in the old group and shares in the new group. Herzberg

et al. do not require that Q remain secret if there are a full t corruptions while

the resharing protocol executes because the old and new groups in their protocol

are identical. Hence, a full t corruptions during the transfer process from epoch e

to e + 1 implies that the same servers are corrupted in both epochs, and thus Q

reveals nothing new. Pages 49–77 of Jarecki’s master’s thesis [Jar95] contain more

comprehensive proofs of secrecy for the composition of their two protocols. Their

work also shows that a complete “view” of the adversary’s information similar to

Figure 8-1 that includes the Feldman commitments does not reveal any information,

and they also prove secrecy for a modified scheme using Pedersen commitments.

Our theorems are all predicated on the proposal set S containing at least one

honest proposer. We prove that the proposal selection algorithm guarantees this

114

property.

Theorem 8.2 PSA Secrecy. If S is the set of proposals generated by the proposal

selection algorithm (Figure 5-2), then S contains a proposal from at least one honest

server.

Proof. Let B denote the set of faulty servers whose proposals appear in the initial

proposal set, and let b = |B|. Clearly b ≤ t. We split the responses processed by the

algorithm into three categories:

1. Responses that are satisfied with the current proposal set at the point when

they are processed do not result in the removal of any proposals from the set.

2. Consider responses generated by good servers that accuse bad servers in the

current proposal set (which must also be in B) and responses generated by bad

servers in B. These accusations result in the removal of one proposal from a

bad server and at most one proposal from a good server. There are at most b

such responses.

3. Now consider responses generated by bad servers not in B. Each such response

results in the removal of at most one good proposal and no bad proposals.

There are at most t− b such responses.

Only a response in categories (2) and (3) result in the removal of a good proposal,

and there are at most t such responses. The initial proposal set consists of 2t + 1

proposals, of which 2t+ 1− b are from honest servers, so 2t+ 1− b− t = t+ 1− b ≥ 1

proposals from honest servers remain. 2

Remark 8.3 Notice that in some cases, the number of proposals removed that are

from good servers may exceed the number of proposals removed that are from bad

115

servers, by up to t−b. However, this only happens when not all of the proposals from

bad servers were included in the initial proposal set, and hence the initial proposal

set contains more than t + 1 good proposals.

Corollary 8.4 The information the adversary learns from the execution of Redist0

(Figure 8-1) is independent of the secret s = P (0).

Proof. Follows directly from Theorems 8.1 and 8.2. 2

8.2 Integrity

In this section, we prove that the secret remains intact from epoch to epoch. In

particular, it should always be the case that after a resharing protocol completes,1

any honest node Tk in the new epoch is able to compute its share P ′(βk). This

implicitly assumes that honest servers can identify and discard bogus information

from corrupted servers, which is true as a consequence of our use of forward-secure

signatures and our verification scheme based on Feldman’s scheme, described in

Section 4.2.3. The focus of our proofs is on ensuring that there is enough good

information to establish the new sharing.

First, we show that the Proposal Selection Algorithm (Figure 5-2) produces a set

of proposals that is acceptable to at least t + 1 honest servers. This will allow us to

establish that at least t + 1 servers perform the share transfer to the new group.

Theorem 8.5 PSA Admissibility. Upon termination of the proposal selection

algorithm (Figure 5-2), at least t+1 non-faulty servers are satisfied with the proposals

in the props set.

1We assume here that the protocol does complete and defer the issue of liveness to Section 8.3.

116

Proof. When a response contains an accusation against the current set (i.e., the

sender is unsatisfied), either the accuser or the accusee is faulty, and we add both to

the rejected set and increment d. Hence at any point, at least d faulty servers are

in the rejected set. No server can be both satisfied and rejected at the same time,

so at most t − d faulty servers are in the satisfied set. The algorithm terminates

when |satisfied| = 2t + 1− d, so at least t + 1 of the servers in the satisfied set are

non-faulty. 2

Next, we show that if the protocol terminates successfully, then all honest mem-

bers of the new group have their shares of the secret. Together with Theorem 8.9,

this establishes that the share transfer always succeeds.

Theorem 8.6 If 2t + 1 honest servers in epoch e that know their shares complete

Redist0, every honest server Tk in epoch e + 1 will be able to compute its share.

Proof. Of the 2t + 1 servers in epoch e that are honest, at least t + 1 are satisfied

with the proposal set chosen by the proposal selection algorithm by Theorem 8.5,

and hence each such Si can compute P (αi) + Q(αi) + Rk(αi) for all k. These servers

complete the protocol when they receive t + 1 acknowledgements from servers in the

new epoch, of which at least 1 is non-faulty. If Tk is not one of these t + 1 servers,

it may query all of the non-faulty new servers that did receive the info from the old

group to obtain the points that the old group sent, so we may assume Tk has access

to this information. Hence Tk will receive t + 1 distinct points on P + Q + Rk and

will be able to interpolate this polynomial and evaluate P (βk) + Q(βk) + Rl(βk) =

P (βk) + Q(βk) = P ′(βk), which is Tk’s share. 2

Corollary 8.7 In any epoch e, each honest server is able to obtain its share.

117

Proof. We assume that when the system is first initialized (i.e., in epoch 0),

all honest servers know their share. Thus the corollary holds by Theorem 8.6 and

induction on e. 2

8.3 Liveness

We need to establish that Redist0 terminates successfully, given our limitations on

corruption and the strong eventual delivery assumption (Definition 3.2). The as-

sumptions needed by this section are stronger than the ones needed in Sections 8.1

and 8.2 because it no longer suffices to say that the adversary has complete con-

trol over the network. In order to prove that Redist0 eventually completes (or that

any protocol can make progress at all), we must assume that messages repeatedly

sent between honest servers eventually reach their destinations (eventual delivery).

Strong eventual delivery is essentially a slightly stronger version of eventual delivery;

see Chapter 3 for the formal definition.

First, we show that the proposal selection algorithm terminates. Recall that the

coordinator runs proposal selection after it broadcasts a list of 2t + 1 proposals from

distinct servers and begins to receive MsgProposalResponses from those servers.

Agreement and share transfer cannot begin until the algorithm determines that it

has seen enough responses.

Theorem 8.8 PSA termination. If the initial proposal set contains 2t + 1 pro-

posals, each from distinct servers, then the proposal selection algorithm (Figure 5-2)

terminates after processing at most 2t+ 1 responses from distinct non-faulty servers.

Proof. When a response contains an accusation against the current set, either the

accuser or the accusee is faulty, and we add both to the rejected set and increment

118

d. Hence d represents an upper bound on the number of non-faulty servers in the

rejected set. At any point, each server whose response has been processed by

the algorithm so far is in the satisfied set or the rejected set. Therefore, upon

processing 2t + 1 responses from honest servers, |satisfied| ≥ 2t + 1 − d, which is

the termination condition for the algorithm. 2

Next, we show that when we invoke the BFT agreement protocol [CL02] as a sub-

protocol in step (2d) of our protocol, BFT terminates. To ensure that the agreement

eventually takes place, we assume that when our protocol is invoked, it is invoked

on all non-faulty servers. This assumption ensures that if the coordinator is faulty,

honest servers will eventually notice the lack of progress and initiate a view change.

In BFT, honest clients broadcast their requests to all servers to ensure that view

changes will happen if needed. In Redist0, a “client request” is simply a request to

perform a resharing to the next group, and we assume that clients of our system do

the same as clients in BFT.2

We treat BFT as a black box except in one case; specifically, when a view change

occurs, there is an upcall from the BFT library back into our protocol. Hence,

liveness follows from liveness of BFT, provided that we can demonstrate that the

upcall always returns. When a view change occurs, the new coordinator in Redist0

may have to do more work before it can enter the PRE-PREPARE phase of the next

view. In particular, it may have to re-execute steps (2a) through (2c) of Redist0, in

which it asks other nodes to vote on the 2t + 1 proposals it has collected. The new

coordinator will always get proposals from the 2t + 1 non-faulty servers under the

eventual delivery assumption, and the proposal selection process will terminate by

2The client in our system need not be a physical machine. The start of the transition to the
next epoch could be initiated by another agreement operation, by a human administrator, or by a
separate protocol responsible for managing the system configuration.

119

Theorem 8.8. Subsequently the new coordinator can begin agreement in the new

view, returning to BFT. Hence, the additional steps required at the start of each

view do not invalidate BFT’s liveness guarantees.

Now we are ready to prove that the entire protocol Redist0 terminates.

Theorem 8.9 If at least 2t + 1 honest servers in epoch e initiate Redist0, the coor-

dinator is honest, and the proposal selection algorithm terminates, then Redist0 will

terminate at all honest servers in epoch e.

Proof. By Corollary 8.7, all honest servers in epoch e have their shares.

In step (1) of Redist0, the coordinator awaits 2t+1 well-formed MsgResponses,

which it will eventually receive from honest servers by the eventual delivery assump-

tion and the assumption that there are at least 2t+1 non-faulty servers. It broadcasts

these proposals and collects responses, which are input to the proposal selection al-

gorithm. PSA terminates by Theorem 8.8, and when it does, the coordinator will run

the BFT protocol. The 2t + 1 honest servers will accept the coordinator’s proposal

set and be complicit in the agreement; hence BFT will terminate as shown in [CL02],

and all honest servers will learn the result of this agreement.

By Theorem 8.5, at least t + 1 of the honest servers will be able to use the

chosen proposal set and generate MsgNewPoly messages for the new group. The

honest servers that can use the proposal set terminate the protocol upon receipt of

t + 1 acknowledgements from the new group, which they will receive since 2t + 1

members of the new group are honest. Honest servers that cannot use the proposal

set terminate immediately after completing BFT. 2

120

8.4 Verifiable Accusations

Verifiable accusations, described in Section 6.1, are an optimization to the basic

Redist0 protocol. In this section, we show that the changes required in order to

support verifiable accusations preserve secrecy, integrity, and liveness.

There are two significant changes. First, MsgProposalResponse messages con-

tain accusations, which reveal additional information, so we need to show that this

change does not impact secrecy. Second, the verifiable accusations option uses a dif-

ferent Proposal Selection Algorithm shown in Figure 6-6, rather than the one from

Figure 5-2. Furthermore, the coordinator waits for only t + 1 proposals instead of

2t + 1, so fewer proposals are available at the start of the algorithm. We will show

that Theorems 8.2, 8.5, and 8.8 also hold for the modified algorithm. In fact, the

proofs are simpler than in the original protocol.

The modified message formats for verifiable accusations were shown in Figure 6-5.

In MsgPropsalResponse, the BadSet, which merely enumerated the bad propos-

als, has been replaced with AccusationSet, which contains a list of encryption keys.

When Sj accuses Si, it includes the encryption key Si used to encrypt its proposals

intended for Sj ; this means that either Si or Sj is faulty. If Si is faulty and Sj is

honest, then revealing this key only allows others to decrypt messages encrypted

using Sj ’s public key parameterized on identity i and epoch e, since we are using

the forward-secure identity-based encryption scheme of Section 6.1.4. Since Si is

faulty, only faulty parties will use these encryption parameters, so no information

from honest servers is revealed. If the accuser Sj is faulty, on the other hand, then

revealing its decryption key or the contents of messages sent to it does nothing, since

the adversary already has this information anyway by virtue of Sj being corrupted.

These next theorems state that the modified Proposal Selection Algorithm pre-

121

serves the same properties as the original algorithm.

Theorem 8.10 PSA Secrecy (Verifiable Accusations). If S is the set of pro-

posals generated by the proposal selection algorithm (Figure 6-6), then S contains at

least one proposal from an honest server.

Proof. The algorithm is initialized with proposals from t + 1 distinct servers. Of

these servers, at most t can be faulty, and hence there is at least one proposal in

the initial set from a non-faulty server. The algorithm only removes a proposal if

there is a valid accusation against it (meaning the proposal is bad) or if the proposer

generates an invalid accusation against another server. Non-faulty servers generate

neither bad proposals nor bad accusations, so the final set contains at least one

proposal from a non-faulty server. 2

Theorem 8.11 PSA Admissibility (Verifiable Accusations). Upon termina-

tion of the proposal selection algorithm (Figure 6-6), at least t + 1 non-faulty servers

are satisfied with the proposals in the props set.

Proof. Replies from non-faulty servers will include valid accusations against all of

the proposals they are not satisfied with, and all such proposals will be removed.

Hence all non-faulty servers whose replies are processed will be satisfied with the

chosen set. The algorithm terminates after processing 2t + 1 responses, of which at

least t + 1 must be from non-faulty servers. 2

Theorem 8.12 PSA termination (Verifiable Accusations). The proposal

selection algorithm (Figure 6-6) terminates after processing at most 2t + 1 responses

from distinct non-faulty servers.

122

Proof. The algorithm terminates after receiving 2t + 1 replies. At most t of the

3t + 1 servers are faulty, and by the eventual delivery assumption (Definition 3.3),

replies from all of the non-faulty servers will eventually be received. 2

8.5 Reducing Load on the Coordinator

Section 6.2 specified a modification to Redist0 that reduces the load on the coordinator

by using hashes. Here, we argue that the hashing optimization preserves liveness,

integrity, and secrecy. Recall that until BFT is invoked, the principal job of the

coordinator is to provide the group with a consistent view of a set of proposals

collected from 2t + 1 distinct servers and process votes on those proposals. With the

optimization, the coordinator sends a list of cryptographic hashes of the proposals

instead of the proposals themselves. Honest servers that are missing proposals in

the set can request them from the coordinator. Clearly this change does not impact

secrecy, and we argue that it does not affect integrity or liveness either.

Integrity. We require that the hash function H be collision-resistant, so that a

faulty coordinator even in concert with other faulty servers cannot feasibly produce

a hash value that corresponds to multiple proposals. Therefore, a MsgProposalSet

from the coordinator containing hashes along with proposals that match those hashes

is just as good as a MsgProposalSet generated according to the original Redist0.

Liveness. If the coordinator is dishonest, it may neglect to send missing proposals,

which may make it impossible for non-faulty servers to agree to a set of proposals.

However, in this case the non-faulty servers will initiate a view change and elect a

new coordinator.

123

8.6 Decreasing the Threshold

The protocol for decreasing the threshold (Section 7.1) is based on the addition of

virtual servers, which are simulated locally by each real server. If the initial threshold

was t and the new threshold is t′ = t− v, v virtual servers are added.

Secrecy. Since each real server simulates each virtual server, the adversary knows

everything that each virtual server knows. Thus, in the context of secrecy, the

adversary has secret information from t′ + v servers. But t′ + v = t, and the reduced

scheme still uses degree-t polynomials, so all the theorems from Section 8.1 are still

applicable.

Integrity. Virtual servers do not generate proposals, but they do participate in

share transfer. The shares of virtual servers are public, and they use their shares

to generate MsgNewPoly messages, based on the chosen proposal set. Each non-

faulty physical server sends the MsgNewPoly “from” each virtual server to the new

group, and members of the new group use the commitments to verify the accuracy

of the simulation. (In practice, physical servers would likely coordinate with each

other to avoid duplication of effort.)

Liveness. Within the old group, servers never wait for responses from virtual servers,

since the virtual servers are simulated locally. BFT and proposal selection are run

with respect to the reduced threshold t′ and physical group size n′ = 3t′ + 1, so

liveness is preserved as per the theorems of Section 8.3.

8.7 The Two-Step Redist+c

Section 7.2.2 discussed protocol Redist+c, which increases the threshold by c by per-

forming two resharings. This section establishes that Redist+c is correct. The first

124

resharing increases the group size to 3t + c + 1 without changing the threshold, and

the second increases the threshold to t′ = t + c. Only t faulty nodes are allowed in

the intermediate group.

The first resharing uses additional Rk polynomials within each proposal, but

the number of proposals, the structure of the first two steps of the protocol, and

the number of messages exchanged remain the same. In the share transfer stage,

additional MsgNewPoly messages are sent to account for the larger group size, but

old servers still only await t + 1 acknowledgements, since the threshold in the new

group is still t. Since we haven’t changed the number of faults we allow or the number

of responses we need to wait for in the protocol at this point, all of the correctness

results we derived for Redist0 still apply.

The second transfer, from the temporary group to the new group of size 3t′ + 1,

uses degree-t′ polynomials so that when share transfer occurs, t′ corrupted servers in

the new group cannot compromise secrecy. The Proposal Selection Algorithm waits

for c extra responses, which ensures that c additional honest servers are able to use

the chosen proposal set. Hence, there are t′ + 1 non-faulty servers that are able to

perform the share transfer involving a degree-t′ polynomial, so integrity is preserved.

Liveness is preserved because the temporary group has c additional non-faulty servers

in it, so we can afford to wait for another c responses, and the proposal selection

process will eventually terminate.

8.8 The One-Step Redist
ν
+c

The threshold increase protocol Redist
ν
+c, described in Section 7.2.3, uses proposal

polynomials of degree t′ = t + c to increase the degree of the sharing polynomial in

the new group. It uses verifiable accusations to ensure that all servers in the new

125

group are able to receive their shares. In this section, we prove that Redist
ν
+c satisfies

the secrecy, integrity, and liveness properties we established for Redist0. There are

several significant differences in the protocol, including multiple iterations of proposal

selection and the addition of a Recover protocol within the new group.

8.8.1 Secrecy Protection of Redist
ν
+c

First we consider Redist
ν
+c by itself and establish that Redist

ν
+c has the same secrecy

properties as described in Section 8.1. Theorem 8.13 is analogous to Theorem 8.1 for

Redist0, but applies only to a single iteration of Redist
ν
+c. Theorem 8.14 shows how

the fact that Redist
ν
+c may require multiple iterations doesn’t affect secrecy.

Theorem 8.13 If S, the set of proposals chosen by the proposal selection algo-

rithm 5-2 contains at least one proposal from an uncorrupted server, then the in-

formation the adversary learns in any given iteration of Redist
ν
+c is independent of

the secret s = P (0).

Proof. The adversary is given t points on P and t′ distinct points on P + Q, and

none of these points are at x = 0. The t points on P are independent of P (0) because

P is of degree t and hence has at least one free coefficient. Similarly, the t′ points

on P + Q are independent of P (0) + Q(0) because P + Q is of degree t′. The rest of

the proof proceeds as in Theorem 8.1. 2

Theorem 8.14 The information the adversary learns over all iterations of Redist
ν
+c

is the same as the information learned in iteration 0.

Proof. Each subsequent iteration of Redist
ν
+c differs from the previous only in that

the proposal set is made smaller by the removal of provably bad proposals. These

126

proposals were generated by faulty servers, and hence are known to the adversary

already. Although the adversary can collect share transfer messages for different

iterations, the difference between the polynomials used in these messages is a sum

of invalid proposals. Hence the adversary learns nothing new. 2

Corollary 8.15 The information the adversary learns from the execution of Redist
ν
+c

is independent of the secret s = P (0).

Proof. Follows from Theorems 8.2, 8.13 and 8.14. 2

8.8.2 Liveness of Redist
ν
+c

The interaction between the view change mechanism and iterations is awkward, but

together these two features guarantee that Redist
ν
+c always terminates. Recall that

views happen sequentially, and the system as a whole operates in a single view at

any given time, even though individual servers may be “slow” and have to be sent a

view change certificate so that they are aware of the current view. Iterations happen

in parallel, but as we will show, there are at most c + 1 iterations. Note that if the

protocol is executing in some view v with ι parallel iterations and a view change

occurs, the new coordinator may start by executing iteration 0. The number of

parallel iterations being run at a given time reflects the number of times the current

coordinator has received a new accusation against its current proposal set.

First, we prove a lemma that says that in any iteration, either Redist
ν
+c will be able

to terminate in that iteration, or it will proceed to the next iteration. The lemma is

presented with respect to “some view” of each iteration because it is difficult to say

anything about views in which the coordinator is faulty and behaves badly. However,

when that happens, we know that the non-faulty servers will eventually initiate a

view change, and in some future view, the coordinator will behave correctly.

127

Recall that protocol messages contain an iteration number field and a view num-

ber field, and messages for different iterations are distinct, as are messages from

different views. Proposal sets are associated with iterations, and hence it may be

understood that when we speak of the messages received in a particular iteration,

all of those messages that come from honest servers are based on the same proposal

set.

Lemma 8.5 In some view of any iteration of Redist
ν
+c, once BFT has completed,

one of two things is true.

1. Each server in the new group will eventually receive t′ +1 valid MsgNewPoly

messages from distinct servers in the old group.

2. The coordinator will eventually receive a MsgProposalResponse from an

honest server that accuses a proposal in the current proposal set.

Proof. Suppose we are in some view v with an honest coordinator, and a view

change does not occur. If (2) does not occur, then all honest servers that are unable

to use the current proposal set have responded, so all 2t + 1 honest old servers are

able to use the current proposal set. Therefore, once agreement completes, at least

2t + 1 valid MsgNewPoly messages are sent to every member of the new group.

Since c ≤ t, we have t′ + 1 = t + c + 1 ≤ 2t + 1, so case (1) occurs. Such a view v

exists under the strong eventual delivery assumption (Definition 3.2) because view

changes will continue to occur until the coordinator is honest and the view change

timeout is long enough to allow all non-faulty nodes to respond. 2

Next, we show that for iteration c, only case (1) of Lemma 8.5 is possible.

128

Lemma 8.6 In some view of iteration c (counting from 0) or some earlier iteration,

each server in the new group will eventually receive t′ + 1 MsgNewPoly messages

from distinct servers in the old group.

Proof. The current coordinator in any view of iteration c is also executing in

iterations 0, . . . , c − 1 in parallel, if that coordinator is honest. Suppose servers in

the new group never receive MsgNewPoly messages from distinct servers in the

old group in any iteration less than c. Then by Lemma 8.5, the current coordinator

received an additional accusation against its current proposal set in each of these

earlier iterations. It began with 2t + 1 MsgProposalResponses in iteration 0, so

after c iterations it has 2t+c+1 responses, of which t+c+1 = t′+1 came from honest

servers. If the coordinator is honest, these servers are all able to use the resulting

proposal set, so each such server will send a MsgNewPoly message to all servers in

the new group. Furthermore, the view change protocol guarantees that the protocol

will eventually proceed to some view in which the coordinator is honest. 2

Theorem 8.16 After starting at most c + 1 iterations, Redist
ν
+c terminates for all

honest members of the old group.

Proof. The two cases of Lemma 8.5 indicate that in each iteration, either each server

in the new group receives t′ + 1 MsgNewPoly messages from the old group, or the

coordinator receives a new accusation, which prompts it to start a new iteration.

Lemma 8.6 states that for iteration c, only the former case is possible. When honest

servers in the new group receive t′ + 1 MsgNewPoly messages, they broadcast

MsgTransferSuccess to all honest servers in the old group. There are at least

2t′ + 1 honest servers in the new group, so all honest servers in the old group receive

2t′ + 1 MsgTransferSuccess messages. When this happens, the servers in the old

129

group send MsgCompletionCertificates to the new group, and the new group

runs BFT to agree to some valid completion certificate. BFT terminates as shown

by Castro et al. [CL99]. 2

8.8.3 Integrity Preservation for Redist
ν
+c and Recover

In Section 8.2, we showed that after Redist0 terminates, any node Tk in the new group

that didn’t have its share could simply ask all other members of the new group for

the MsgNewPoly messages received during the redistribution. The responses Tk

received would always suffice for Tk to recover its share. When Redist
ν
+c terminates,

the guarantees we are able to make about the integrity of the secret are weaker than

for Redist0, and an additional Recover protocol may be needed to ensure that Tk can

recover its share.

Lemma 8.7 After Redist
ν
+c terminates, at least t′+1 honest servers in the new group

have their shares.

Proof. Servers in the old group only terminate the protocol upon receipt of 2t′ + 1

MsgTransferSuccess messages, and t′+1 of these messages must come from honest

servers. Honest servers in the new group only generate these messages when they

receive t′ +1 MsgNewPoly messages that are valid for them, and t′ +1 valid points

suffice for these servers to interpolate their shares. 2

Lemma 8.8 If Tk is honest and broadcasts a MsgRecover message, and at least

t′ + 1 nodes know their shares, then Tk is eventually able to recover its share.

Proof. Recover terminates when Tk collects t′ + 1 valid MsgNewPolyR messages

from distinct nodes. Each such message contains a point on the same degree-t′

130

polynomial, which Tk can interpolate using the t′ + 1 points and evaluate at βk to

obtain its share. 2

Theorem 8.17 After Redist
ν
+c terminates, all honest servers in the new group have

their shares.

Proof. Implied by Lemmas 8.7 and 8.8. 2

8.8.4 Liveness and Secrecy for Recover

Recover is needed in combination with Redist
ν
+c to ensure that we are able to guar-

antee integrity, i.e., all honest servers in the new group are able to reconstruct their

shares. However, we must also show that the addition of the Recover protocol does

not cause us to sacrifice secrecy, and that Recover eventually terminates.

Secrecy preservation for Recover is straightforward to establish and follows a

similar argument to the one used for Redist0. When Recover(k) is executed, the

only node to receive information based on the sharing of the secret is Tk. The only

significant concern is that if Tk is dishonest, it might try to coerce honest servers

into revealing information about their shares.

Lemma 8.9 If Tk is faulty, Tl is honest, and Feldman’s scheme is secure, then R′
k(βl)

is independent of the information the adversary learns from running Recover(k).

Proof. Honest nodes Tl receive a set of t′ + 1 proposal polynomials Ri,k along with

t′ + 1 responses that use verifiable accusations to eliminate up to t′ bad proposals.

They compute R′
k as the sum of the remaining proposals, at least one of which comes

from an honest server and is unknown by the adversary; therefore, R′
k is random

and independent of the adversary’s proposals. From the servers it has corrupted,

131

including Tk, the adversary learns t′ points on R′
k, but one of these points is Rk(βk) =

0, which is already public knowledge. Rk has degree t′, so it has t′ + 1 degrees of

freedom; hence, R′
k(βl) could be arbitrary based on the information available to the

adversary. 2

Theorem 8.18 The adversary learns nothing from running Recover(k) that it could

not learn without running the protocol.

Proof. By Lemma 8.9, if Tk is faulty and Tl is honest, then the adversary learns

nothing about R′
k(βl). Therefore, when all honest servers Tl send P ′(βl) + R′

k(βl), all

this allows the adversary to do is interpolate P ′ + R′
k and compute P ′(βk) + R′

k(βk),

i.e., Tk’s share, which the adversary already knows. If, on the other hand, Tk is

honest, then the points it receives are never revealed to the adversary anyway. 2

In the context of Recover(k), liveness means that Tk eventually gets its share and

can stop executing the protocol. We can only prove liveness of Recover(k) in the

case where Tk is honest. However, this restriction is acceptable because the entire

purpose of executing Recover(k) is to allow Tk to recover its own share, and we only

care that non-faulty servers have their shares. If a faulty Tk runs Recover, that

instance may never terminate. Eventually, the next resharing will take place despite

Tk being faulty, and honest servers will stop participating in Recover(Tk) when they

discard their secret information.

Theorem 8.19 If Tk is non-faulty and at least t′ + 1 honest servers know their

shares, then Tk eventually acquires its share.

Proof. Tk broadcasts a MsgRecover message and collects t′ + 1 MsgProposalRs,

which it can clearly afford to wait for, since there are 2t′ + 1 honest servers in

132

the new group. Then Tk broadcasts a MsgProposalSetR message and waits for

t′ + 1 responses from honest servers that know their shares before broadcasting a

MsgResponseSetR. There are t′ + 1 such servers by assumption, so Tk will even-

tually hear from them all. The first t′+1 responses may not all be from honest servers,

but Tk broadcasts a revised MsgResponseSetR message each time it receives an

additional response. Once Tk has sent the MsgResponseSetR that reflects re-

sponses from the t′ + 1 honest servers that know their shares, those t′ + 1 servers will

each be able to send a MsgNewPolyR to Tk, and Tk terminates when it receives

t′ + 1 valid MsgNewPolyR messages. 2

133

134

Chapter 9

Performance

We analyze the performance of our protocol and compare it to other schemes. Prior

schemes that support secret redistribution to a new group require exponential com-

munication in the worst case, whereas our protocol requires only a polynomial

amount of communication. We also consider related schemes for ordinary proac-

tive secret sharing that have performance characteristics similar to ours, but that

are more limited in what they can do.

We measure performance principally in the number of bytes that must be suc-

cessfully exchanged by each honest party in order for the protocol to complete; we

do not count traffic generated by dishonest parties, as this could be arbitrary. In

protocols such as ours in which a particular node (e.g., the coordinator) represents

a bottleneck, we analyze the performance with respect to that node. The number

of bytes exchanged is a better metric than, say, number of messages, because it is

not subject to gimmicks that trade number of messages for message size. It is also

easier to analyze than metrics based on time because the adversary can influence the

amount of time required for the protocol to complete by delaying network traffic.

135

We measure performance under three different scenarios:

Optimistic case. We assume the number of faults is a small constant, not propor-

tional to t. We expect this to be the common case, since building a practical

Byzantine-fault tolerant system that is reliable with overwhelming probability

requires that the individual machines be relatively reliable. To see why this is

true, suppose the probability of an individual machine failing is close to 1/3.

Then regardless of the group size n, the probability that the number of faults

is greater than ⌊n/3⌋ will always be high. Rodrigues et al. [Rod] found that in

order for the system as a whole to remain secure over a large number of epochs

with 99.999% probability, a reasonable group size, and independent failures,

individual machines must be on the order of 99% reliable.

Average case with non-adaptive adversary. Assume that the adversary con-

trols the maximum number of faulty replicas in each group and behaves arbi-

trarily badly. However, the adversary is not adaptive and must choose which

nodes to corrupt in advance of the execution of the protocol. We make average-

case assumptions about the number of coordinators that must be chosen until

we have selected a non-faulty coordinator, the number of subsets of the group

that must be chosen until we have chosen an entirely non-faulty subset, and

so on. This scenario is meant to reflect the performance of real-world systems

operating in the presence of malicious faults.

Worst case. We assume an adaptive adversary that controls the maximum number

of faulty replicas in each group and behaves arbitrarily badly. Furthermore we

make worst-case assumptions about coordinator and subgroup selection. This

scenario is essentially the worst case permitted by our threat model, but is

136

Optimistic Average Pessimistic

Our scheme O(t3) O(t4) O(t4)
Zhou et al. O(2t) O(2t) O(2t)
Cachin et al. O(t4) O(t4)

Figure 9-1: Protocol Performance Comparison: Bytes Sent by Each Honest Server

not particularly interesting for comparing protocols; rather it lets us define a

standard to be met. We believe that in order for a protocol to be practical,

it must have tolerable performance in the presence of malicious faults. Some

protocols that may perform well under optimistic assumptions fail this test by

allowing an adversary to force them into an exponential number of rounds of

communication. Furthermore, users of proactive secret sharing systems need

to adjust the interval between resharings to reflect their assumptions about the

rate at which nodes are corrupted and worst-plausible-case assumptions about

protocol execution time.

Figures 9-1 and 9-2 present asymptotic performance results for our system as

well as results for Zhou et al.’s mobile proactive secret sharing scheme [ZSvR05]. For

purposes of comparison, we also list the overhead of Cachin et al.’s scheme [CKLS02],

which is the best non-mobile proactive secret sharing scheme for asynchronous net-

works. More detailed analysis of the performance of these schemes can be found in

Sections 9.1, 9.2, and 9.3. We omit Wong et al.’s protocol [WWW02] because it uses

a threat model that is considerably weaker than the other schemes, and the other

schemes’ performance characteristics would be different if we used this weaker set of

assumptions.

In our analysis, we omit explicit reference to security parameters. Security param-

eters are constants that are related to implementation details such as cryptographic

key length, finite field cardinality, hash length, and so on. Making these parameters

137

Optimistic Average Pessimistic

Our scheme O(1) O(1) O(n)
Zhou et al. O(1) O(1) O(1)
Cachin et al. O(1) O(1)

Figure 9-2: Protocol Performance Comparison: Rounds of Communication

larger improves security against brute-force attacks but also increases the computa-

tional and network overhead of the protocol. All of the protocols we examine can be

implemented securely (under standard computational hardness assumptions) such

that their overhead is linear with respect to the security parameter.

Another detail we do not include in our analysis is additional overhead due to

network packet loss or delay. In practice, packets are retransmitted periodically if

not acknowledged by the intended recipient, and this constitutes a source of overhead

measured in terms of number of bytes sent. Moreover, protocols such as ours that

are based on BFT perform view changes after an exponentially-increasing timeout.

These view changes may abort protocol instances with honest primaries until the

timeout has increased to match the actual maximum message delay d, which increases

the overhead by a factor of log d. However, experience with BFT shows that view

changes are both cheap and extremely rare; in an experimental setup, spurious view

changes were too infrequent to cause poor performance even with an initial timeout

of less than a second [CL02].

138

9.1 Performance of Our Scheme

9.1.1 Optimistic Case

We first consider our MPSS scheme in the optimistic case, since this case is the easiest

to analyze. We analyze the version of our scheme with the hashing optimization of

Section 6.2, which reduces load on the coordinator. In the optimistic case, we assume

that the coordinator and all other nodes are honest. Most of the overhead comes

from the proposal distribution and selection in the first phase of the protocol, mainly

because of the size of the verification information that needs to be exchanged. The

share transfer to the new group, by comparison, is relatively cheap.

In the first step of our protocol, each node Si in the old group generates a

MsgProposal consisting of 3t + 1 proposals and 3t + 2 commitments. Each

proposal contains 3t + 2 values and each commitment contains t or t + 1 values, so

the size of a MsgProposal is O(t2). Each node broadcasts its MsgProposal to all

members of the old group, resulting in O(t3) communication per node.

In the optimistic case, the hashing technique of Section 6.2 allows the coordinator

to send only hashes of the first well-formed 2t + 1 MsgProposals it receives, rather

than the full proposals. Thus, the MsgProposalSet message sent by the coordinator

has size O(t), and isn’t a significant source of overhead.

Nodes reply with MsgProposalResponses containing up to t constant-size ac-

cusations, regardless of whether the verifiable accusation scheme of Section 6.1 is

used. The coordinator broadcasts these responses in a MsgCommit message of size

O(t2) to 3t + 1 servers, and in doing so it transmits O(t3) bytes.

Finally, share transfer to the new group involves sending O(t) MsgNewPoly

messages from each old node to each new node, where each such message is of size

139

O(t2). Hence each node in the old group sends O(t3) bytes for the share transfer

step.

Asymptotically, the largest sources of overhead are each node broadcasting the

commitments contained within the proposals, the coordinator broadcasting the re-

sponses it collects, and each node transferring the information to the new group.

These tasks require O(t3) bytes each in the optimistic case, so we conclude that the

overhead of our protocol in this case is O(t3).

9.1.2 Average case with non-adaptive adversary

We consider the case where there are t faulty nodes, but the adversary is non-

adaptive. In other words, the adversary controls some chosen set of t nodes, but he

cannot choose these nodes during the execution of the protocol, or with knowledge

of what sequence of coordinators the system will cycle through as it performs view

changes. This is a realistic model if we assume that most of the faults in the network

are generally preexisting, and are not induced during the (brief) time during which

the protocol is executed.

In our analysis of the optimistic case, we assumed that the coordinator was non-

faulty. If the coordinator is faulty, we may be forced to perform one or more view

changes to elect new coordinators until we have selected a non-faulty coordinator. We

require t ≤ ⌊n/3⌋, so the probability that the first coordinator we select is faulty is

less than one third. The process of choosing subsequent coordinators can be modeled

as random selection without replacement, which we can conservatively approximate

as selection with replacement. Thus the expected number of view changes we must

undergo in order to get a good coordinator is less than
∑t−1

i=0(1/3)i <
∑∞

i=0(1/3)i =

3/2. We conclude that the difference between best-case behavior and average case

140

behavior of our protocol in terms of the number of view changes that must occur

is a constant factor of 1.5. Furthermore, the expected number of rounds is still a

constant.

The other new source of overhead we must consider in the presence of faults is ex-

tra work that an honest coordinator must do in order to ensure that all honest nodes

receive the information they need. Recall that the coordinator collects commitments

and proposal sets from 2t + 1 nodes, t of which may be faulty. One of the roles of

the coordinator in our protocol is to ensure that all nodes have a consistent view of

which proposals are to be considered. If the t faulty nodes send their proposals and

commitments to the coordinator and to nobody else, the coordinator is responsible

for ensuring that all honest nodes receive the information. Hence, even if we use

the hashing optimization of section 6.2, the coordinator may need to broadcast O(t)

MsgProposals in full, which has a byte cost of O(t4). This is the essential difference

between the optimistic case and the scenario with t Byzantine faults; the adversary

can force the coordinator to perform t times as much work as it would otherwise.

9.1.3 Worst case

The worst-case scenario is similar to the average case discussed above, except that

the adversary is adaptive and may infect the first t nodes that the protocol elects as

coordinators. In the worst case, the system will need to perform t view changes. (As

explained at the beginning of the chapter, we do not count spurious view changes due

to message delays.) In each of the t+1 views, the coordinator may send O(t4) bytes.

Other nodes only send proposals in the first view and perform share transfer in the

last view, so in the other views they send only O(t2) bytes. Hence each honest server

sends O(t3) bytes, and the honest coordinator in the final view may also send O(t4)

141

bytes. We do not count the amount of data transmitted via dishonest coordinators,

as this may be arbitrary. Hence the overall overhead in terms of number of bytes

sent and received by each node is t4 +
∑t

i=0 t2 = O(t4).

9.2 Zhou et al. Scheme Performance

In APSS [ZSvR05], instead of using a standard threshold-t Shamir sharing, the secret

sharing is composed of
(

n

t+1

)

=
(

3t+1
t+1

)

trivial t+1-out-of-t+1 sharings: one sharing for

each possible subset of t+1 servers. (A t+1-out-of-t+1 sharing can be implemented

easily using bitwise exclusive-or; see section 2.1.1.) The APSS resharing protocol

works by generating subshares of these shares, then later recombining the subshares

in a different order. The communication required to transmit these subshares is

proportional to the square of the size of the shares. So even in the best possible

scenario, APSS incurs an overhead that is at least O(
(

n

t+1

)2
.

APSS makes use of a coordinator, as in our protocol, and that coordinator may be

faulty. Instead of relying on the Strong Eventual Delivery assumption (definition 3.2)

as we do, APSS runs t + 1 resharing protocols in parallel, each with a different

coordinator. Therefore, even in the optimistic case, the performance of their protocol

is t + 1 times worse than if they were allowed to assume an honest coordinator.

Hence, in all cases, the overhead of their protocol is
(

3t+1
t+1

)2
t, which is exponential

in t.

9.3 Cachin et al. Scheme Performance

We now consider the proactive secret sharing scheme of Cachin et al. as a means of

demonstrating the plausibility of the performance of our scheme, MPSS. MPSS and

142

the Cachin et al. scheme differ in functionality; MPSS provides redistribution to a

new group of shareholders, whereas the Cachin scheme only provides resharing within

the same group. Nevertheless, the Cachin scheme is interesting because it is the most

efficient scheme for non-mobile asynchronous PSS under reasonable assumptions.

The Cachin et al. proactive refresh scheme combines a complex hierarchy of more

basic protocols: Asynchronous Verifiable Secret Sharing (AVSS) [CKLS02], Multi-

Valued Validated Byzantine Agreement (VBA) [CKPS01], Binary-Valued Validated

Byzantine Agreement [CKS00], Consistent Broadcast [CKS00], and Threshold Coin

Tossing [CKS00, CKPS01]. Their AVSS scheme is analogous to the proposal broad-

cast and selection phase of our protocol, and their VBA protocol is analogous to BFT.

However, rather than using a coordinator and view changes to decide which AVSS

instances have completed successfully, they have a randomized agreement protocol

based on threshold coin tossing and threshold signatures to make this decision.

The Cachin et al. scheme is somewhat heavyweight, but has some interesting

characteristics as compared to MPSS. Buried in all the layers of the protocol are

potentially O(t) threshold signature operations, and furthermore, the O(t4) overhead

is incurred by every node, and not just the coordinator. Nevertheless, the scheme

works well when there are close to t faulty nodes. In contrast, MPSS works well in

the optimistic case, where the coordinator is not faulty. However, a large number of

compromised servers can force the coordinator to do t times as much work as the

optimistic case under less optimistic assumptions. Under less optimistic assumptions,

the overhead of our protocol is comparable to that of Cachin et al.’s protocol.

143

9.4 Separating the Proposal Selection and Agree-

ment Phases

Most of the protocols discussed in this section can be decomposed into two steps.

In the first step, each server generates randomized proposals, which represent that

server’s contribution to the computation of the next sharing. These proposals may

be a sequence of polynomials with particular properties as in our scheme or a random

sharing of the server’s own share as in the other three schemes. In the second step of

the protocol, an agreement operation takes place, in which the servers agree on a set

of proposers that behaved correctly to the extent that their proposals can be used.

Our protocol has a third step in which shares are transferred to the new group, since

the new group in our protocol is not restricted to be the same as the old group.1

The first two steps are decomposable, so for instance it is possible to use the first

step of Cachin’s scheme with the BFT agreement protocol, or possibly with Zhou’s

trick of running t+ 1 protocol instances, each with a different coordinator, and using

agreement to decide when one of them has completed. Similarly, our protocol could

have made use of Cachin’s multi-valued validated Byzantine agreement.

For all three schemes discussed in this chapter, the protocol overhead is dominated

by the first step, in which proposals are exchanged. Figure 9-3 summarizes the

proposal sizes for the various protocols. Our proposals are asymptotically as large as

Cachin’s, and all three schemes use O(t2) agreement protocols. However, our scheme

is optimized for the optimistic case where most nodes broadcast their proposals

correctly and the coordinator is honest.

1Zhou et al.’s protocol is a little bit different from the others. The authors claim that they can
run their protocol with t + 1 coordinators in parallel, one of these instances will complete, and
therefore they do not require agreement. Nevertheless, their protocol for deciding when it is okay
to delete old shares resembles agreement.

144

Proposal Size Agreement Overhead

Our scheme O(t2) O(t2)
Zhou et al. O(2t) O(t2)
Cachin et al. O(t2) O(t2)

Figure 9-3: Proposal and Agreement Overheads of Each Protocol

We chose to use BFT because it is known to be an efficient agreement protocol

in practice. As compared to VBA [CKPS01], it achieves better performance in the

optimistic case, which we believe to be the common case. In the worst case, its com-

munication overhead is asymptotically as bad as VBA, but BFT may require more

rounds of communication. Furthermore, BFT does not require expensive primitives,

such as a voting scheme that uses multiple instances of a threshold-signature-based

coin toss protocol.

145

146

Chapter 10

Conclusions

As we have shown, a proactive secret sharing scheme should satisfy several properties

to be useful in real systems:

Asynchrony. Real networks such as the Internet are asynchronous; communication

is occasionally disrupted for limited but unpredictable amounts of time. Pro-

tocols that require assumptions about the maximum delay in the network for

correctness can fail in such scenarios.

Mobility. It must be possible to transfer the sharing from one set of shareholders

to another. Schemes that use a fixed set of shareholders over the lifetime of

the system must assume that as additional machines fail, other shareholders

are “recovered”. This assumption is unrealistic because, among other things, it

implies that the encryption and signing keys shareholders use to communicate

are never exposed or lost.

Efficiency. Proactive resharing protocols tend to be relatively heavyweight, but

this is tolerable because they generally do not need to be executed frequently.

147

However, it is important that the overhead in terms of number of messages,

message size, and rounds of communication stay within reasonable bounds

as the threshold increases. Exponential schemes such as [Che04, WWW02]

seem to have high overhead for even moderate thresholds, whereas our scheme

is competitive with asynchronous proactive secret sharing schemes that have

polynomial complexity.

Threshold adaptivity. It is often useful to be able to change the threshold of

failures tolerated in order to adapt to changing requirements and changing

assumptions about the reliability of individual machines.

This thesis describes what we believe is the first protocol to achieve these goals.

The paper also describes an efficient way to implement the protocol by using a

primary. The primary directs the activities of the group and ensures that in the

proposal selection phase, all servers consider identical sets of proposals. This tech-

nique enables very efficient proposal selection because all that is needed is to remove

proposals from the initial set collected by the primary. A view change protocol is

used to ensure that faulty primaries cannot prevent the resharing from being carried

out properly.

Our protocol represents an improvement in performance over other PSS schemes

in asynchronous networks in the “optimistic” case when the primary is honest. If

the primary is faulty, we might need to restart the protocol via view changes up to

t times, but still the overall communication complexity is comparable to or better

than that of other schemes.

Furthermore, our approach can be used with either verifiable or non-verifiable

accusations. Verifiable accusations are a new technique that allows a more efficient

protocol, but requires forward-secure, identity-based encryption. The two-step pro-

148

tocol without verifiable accusations is less efficient by a constant factor, but makes

fewer cryptographic assumptions. When we consider the protocol for increasing the

group size, we find that the opposite is true, namely, the one-step protocol, which

requires verifiable accusations, is more pleasing theoretically but not as good in prac-

tice.

10.1 Open Problems and Future Work

In addition to MPSS, several other proactive secret sharing schemes were discussed in

Chapter 2. None of these other schemes satisfy all of the properties described in the

introduction to this chapter, but several of them are based on sound and promising

techniques. One question is whether schemes such as APSS [CKLS02], which is

asynchronous and efficient, can be extended to support additional features such as

resharing to a new group, increasing the threshold, and decreasing the threshold.

There are many possibilities for combining aspects of different secret sharing pro-

tocols. All of the PSS protocols we have discussed, including the non-mobile ones

where the old and new groups are the same, can be broken down into two phases: in

the first phase, members of the old group communicate amongst themselves to ex-

change information needed to compute the resharing, and in the second phase, the old

group executes an agreement operation and transfers information to the new group.

The design of the first phase depends on the structure of the secret sharing and how

new shares are computed from old shares. MPSS and Jarecki’s scheme [HJKY95]

uses one technique, Cachin et al. [CKLS02] and Wong et al. [WWW02] use another,

and Zhou et al. [ZSvR05] uses a third. Furthermore, these schemes all use different

agreement protocols; our MPSS scheme uses BFT [CL02], Zhou et al. have an agree-

ment protocol that eschews common case optimizations and resembles running BFT

149

in t + 1 views in parallel, and Cachin et al. use a randomized agreement protocol

of their own invention. The Wong et al. scheme doesn’t have a real agreement pro-

tocol, so it isn’t able to efficiently decide which information to use in the presence

of an active adversary. It would be instructive to consider what would happen if,

for instance, one were to combine the first phase of Cachin et al.’s scheme with the

BFT agreement protocol and the second phase of our scheme, or one of various other

possible combinations. Another question is whether doing this makes it possible to

extend other schemes to increase efficiency, support mobility, and so on.

Implementation and evaluation of these schemes is another important piece of fu-

ture work. In order to explore modifications and better understand the performance

of proactive secret sharing schemes, it is necessary to measure how they perform in

real world scenarios. For example, in asymptotic terms, our scheme and Cachin et

al.’s scheme are very similar. However, Cachin et al.’s scheme uses cryptographic

tricks such as threshold signatures and coin tossing, which are very expensive in

practice, to reduce asymptotic complexity. MPSS, on the other hand, uses BFT,

which is optimized for the common case and may not perform well when the number

of faults is large, or when message delays are extremely erratic. These tradeoffs are

difficult to investigate analytically.

Lastly, we note that our protocols for increasing and decreasing the group size

involve a variety of tradeoffs. Our scheme for decreasing the threshold is designed

in such a way that subsequent increases are very cheap; however, if we were to

increase the threshold from 10 to 20 and then back to 10 again, we would not be

able to operate as efficiently as before. This property is dissatisfying theoretically,

even though changes in the threshold are small in practice. A similar issue arises

when increasing the group size: we have a protocol that works well in practice, and

a second protocol using verifiable accusations that is better theoretically but not as

150

good in practice. It is unclear whether these tradeoffs are fundamental, or whether

better ways of changing the threshold exist.

151

152

Bibliography

[BBH06] D. Boneh, X. Boyen, and S. Halevi. Chosen ciphertext secure public key
threshold encryption without random oracles. In RSA Conference, pages
226–243, 2006.

[BF01] D. Boneh and M. Franklin. Identity-based encryption from the weil
pairing. In Joe Kilian, editor, Advances in Cryptology—CRYPTO 2001,
Lecture Notes in Computer Science, pages 213–229. Springer-Verlag, 19–
23 August 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing, pages 1–10, Chicago, Illinois, May 1988.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979,
volume 48, pages 313–317, June 1979.

[Ble98] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on
RSA encryption standard PKCS #1. pages 1–12, 1998.

[BM99] Mihir Bellare and Sara Miner. A forward-secure digital signature scheme.
In Michael Wiener, editor, Advances in Cryptology—CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 431–448.
Springer-Verlag, 15–19 August 1999. Revised version is available from
http://www.cs.ucsd.edu/ mihir/.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 11–
19, Chicago, Illinois, May 1988.

153

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key
cryptosystem secure against adaptive chosen ciphertext attack. In Theory
and Application of Cryptographic Techniques, pages 90–106, 1999.

[Che04] Kathryn Chen. Authentication in a reconfigurable byzantine fault tol-
erant system. In MEng Thesis, Massachusetts Institute of Technology,
2004.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key en-
cryption scheme. In Eli Biham, editor, Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 255–271. Springer-Verlag, 4 – 8 May 2003.

[CKLS02] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In Proc. 9th
(ACM) conference on Computer and Communications Security, pages
88–97. (ACM) Press, 2002.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-
cure and efficient asynchronous broadcast protocols. In CRYPTO ’01:
Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, pages 524–541, London, UK, 2001. Springer-
Verlag.

[CKS00] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
In Proceedings of the 19th ACM Symposium on Principles of Distributed
Computing (PODC 2000), Portland, OR, July 2000.

[CL99] M. Castro and B. Liskov. A Correctness Proof for a Practical Byzantine-
Fault-Tolerant Replication Algorithm. Technical Memo MIT/LCS/TM-
590, MIT Laboratory for Computer Science, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Toler-
ance and Proactive Recovery. ACM Transactions on Computer Systems,
20(4):398–461, November 2002.

[Cop95] Don Coppersmith, editor. Advances in Cryptology—CRYPTO ’95, vol-
ume 963 of Lecture Notes in Computer Science. Springer-Verlag, 27–
31 August 1995.

154

[DF91] Yvo Desmedt and Yair Frankel. Shared generation of authenticators and
signatures. volume 576 of LNCS, pages 457–469. Springer-Verlag, 1991.

[DJ97] Y. Desmedt and S. Jajodia. Redistributing secret shares to new access
structures and its applications. Technical Report ISSE TR-97-01, George
Mason University, July 1997.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pages 427–437, New York City, 25–27 May 1987.

[FLP82] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Technical Report
MIT/LCS/TR-282, Laboratory for Computer Science, MIT, Cambridge,
MA, 1982. Also published in Journal of the ACM, 32:374–382, 1985.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. Lecture Notes in Computer
Science, 1666:537–554, 1999.

[GJKR96] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin.
Robust threshold DSS signatures. In Ueli Maurer, editor, Advances in
Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Com-
puter Science, pages 354–371. Springer-Verlag, 12–16 May 1996.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret
sharing, or how to cope with perpetual leakage. In Coppersmith [Cop95],
pages 457–469.

[Jar95] Stanislaw Jarecki. Proactive secret sharing and public key cryptosystems.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
September 1995.

[Kra00] Hugo Krawczyk. Simple forward-secure signatures from any signature
scheme. In Seventh ACM Conference on Computer and Communication
Security. ACM, November 1–4 2000.

[Lan95] Susan Langford. Threshold DSS signatures without a trusted party. In
Coppersmith [Cop95], pages 397–409.

[LW88] D. Long and A. Wigderson. The discrete log hides O(log n) bits. SIAM
Journal on Computing, 17(2):363–72, 1988.

155

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks.
In Proceedings of the 10th (ACM) Symposium on the Principles of Dis-
tributed Computing, pages 51–61, 1991.

[Ped91a] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In J. Feigenbaum, editor, Advances in
Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Computer
Science, pages 129–140. Springer-Verlag, 1992, 11–15 August 1991.

[Ped91b] Torben Pryds Pedersen. A threshold cryptosystem without a trusted
party (extended abstract). In D. W. Davies, editor, Advances in
Cryptology—EUROCRYPT 91, volume 547 of Lecture Notes in Com-
puter Science, pages 522–526. Springer-Verlag, 8–11 April 1991.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing log-
arithms over GF(p). IEEE Transactions on Information Theory, IT-
24:106–110, 1978.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority. In STOC ’89: Proceedings of the twenty-
first annual ACM symposium on Theory of computing, pages 73–85, New
York, NY, USA, 1989. ACM Press.

[Rod] Rodrigo Rodrigues et al. Automatic reconfiguration for large-scale dis-
tributed storage systems. Unpublished.

[Sha79] A. Shamir. How to share a secret. Communications of the (ACM),
22:612–613, 1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In
G. R. Blakley and David Chaum, editors, Advances in Cryptology: Pro-
ceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer Sci-
ence, pages 47–53. Springer-Verlag, 1985, 19–22 August 1984.

[SW99] Douglas R. Stinson and R. Wei. Unconditionally secure proactive se-
cret sharing scheme with combinatorial structures. In Selected Areas in
Cryptography, pages 200–214, 1999.

[WWW02] T. M. Wong, C. Wang, and J. Wing. Verifiable secret redistribution for
archive systems. In Proceedings of the 1st International IEEE Security
in Storage Workshop, 2002.

156

[YFDL04] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption
for complex hierarchies with applications to forward security and broad-
cast encryption. In ACM Conference on Computer and Communication
Security, pages 354–363, 2004.

[ZSvR05] Lidong Zhou, Fred Schneider, and Robbert van Renesse. APSS: Proactive
secret sharing in asynchronous systems. ACM Transactions on Informa-
tion and System Security, 8(3):259–286, aug 2005.

157

