
Proceedings of the 26th ACM Symposium on Principles of Programming Languages (POPL ’99), San Antonio, Texas, USA, January 1999

JFlow: Practical Mostly-Static Information Flow Control

Andrew C. Myers

Laboratory for Computer Science
Massachusetts Institute of Technology

A promising technique for protecting privacy and integrity of
sensitive data is to statically check information flow within
programs that manipulate the data. While previous work
has proposed programming language extensions to allow this
static checking, the resulting languages are too restrictive for
practical use and have not been implemented. In this pa-
per, we describe the new language JFlow, an extension to
the Java language that adds statically-checked information
flow annotations. JFlow provides several new features that
make information flow checking more flexible and conve-
nient than in previous models: a decentralized label model,
label polymorphism, run-time label checking, and automatic
label inference. JFlow also supports many language features
that have never been integrated successfully with static infor-
mation flow control, including objects, subclassing, dynamic
type tests, access control, and exceptions. This paper defines
the JFlow language and presents formal rules that are used to
check JFlow programs for correctness. Because most check-
ing is static, there is little code space, data space, or run-time
overhead in the JFlow implementation.

Protection for the privacy of data is becoming increasingly
important as data and programs become increasingly mobile.
Conventional security techniques such as discretionary ac-
cess control and information flow control (including manda-
tory access control) have significant shortcomings as privacy-
protection mechanisms.

The hard problem in protecting privacy is preventing pri-
vate information from leaking through computation. Access
control mechanisms do not help with this kind of leak, since

This research was supported in part by DARPA Contract F30602-96-C-0303, monitored
by USAF Rome Laboratory, and in part by DARPA Contract F30602-98-1-0237, also
monitored by USAF Rome Laboratory.

Copyright c 1999 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

they only control information release, not its propagation
once released. Mandatory access control (MAC) mecha-
nisms prevent leaks through propagation by associating a
run-time security class with every piece of computed data.
Every computation requires that the security class of the re-
sult value also be computed, so multi-level systems using
this approach are slow. Also, these systems usually apply a
security class to an entire process, tainting all data handled
by the process. This coarse granularity results in data whose
security class is overly restrictive, and makes it difficult to
write many useful applications.

A promising technique for protecting privacy and integrity
of sensitive data is to statically check information flows
within programs that might manipulate the data. Static
checking allows the fine-grained tracking of security classes
through program computations, without the run-time over-
head of dynamic security classes. Several simple program-
ming languages have been proposed to allow this static check-
ing [DD77, VSI96, ML97, SV98, HR98]. However, the
focus of these languages was correctly checking information
flow statically, not providing a realistic programming model.

This paper describes the new language JFlow, an extension
to the Java language [GJS96] that permits static checking of
flow annotations. JFlow seems to be the first practical pro-
gramming language that allows this checking. Like other re-
cent approaches [VSI96, ML97, SV98, HR98, ML98], JFlow
treats static checking of flow annotations as an extended form
of type checking. Programs written in JFlow can be statically
checked by the JFlow compiler, which prevents information
leaks through storage channels [Lam73]. JFlow is intended
to support the writing of secure servers and applets that ma-
nipulate sensitive data.

An important philosophical difference between JFlow and
other work on static checking of information flow is the focus
on a usable programming model. Despite a long history, static
information flow analysis has not been widely accepted as a
security technique. One major reason is that previous models
of static flow analysis were too limited or too restrictive to
be used in practice. The goal of the work presented in this
paper has been to add enough power to the static checking
framework to allow reasonable programs to be written in a
natural manner.

This work has involved several new contributions: JFlow
extends a complex programming language and supports many

language features that have not been previously integrated
with static flow checking, including mutable objects (which
subsume function values), subclassing, dynamic type tests,
and exceptions. JFlow also provides powerful new features
that make information flow checking less restrictive and more
convenient than in previous programming languages:

It supports the decentralized label model [ML97,
ML98], which allows multiple principals to protect their
privacy even in the presence of mutual distrust. It
also supports safe, statically-checked declassification,
or downgrading, allowing a principal to relax its own
privacy policies without weakening policies of other
principals.

It provides a simple but powerful model of access con-
trol that allows code privileges to be checked statically,
and also allows authority to be granted and checked
dynamically.

It provides label polymorphism, allowing code that is
generic with respect to the security class of the data it
manipulates.

Run-time label checking and first-class label values pro-
vide a dynamic escape when static checking is too re-
strictive. Run-time checks are statically checked to en-
sure that information is not leaked by the success or
failure of the run-time check itself.

Automatic label inference makes it unnecessary to write
many of the annotations that would otherwise be re-
quired.

The JFlow compiler is structured as a source-to-source
translator, so its output is a standard Java program that can
be compiled by any Java compiler. For the most part, trans-
lation involves removal of the static annotations in the JFlow
program (after checking them, of course). There is little
code space, data space, or run time overhead, because most
checking is performed statically.

The remainder of this paper is structured as follows: Sec-
tion 2 contains an overview of the JFlow language and a
rationale for the decisions taken. Section 3 discusses static
checking, sketches the framework used to check program
constructs in a manner similar to type checking, and both for-
mally and informally presents some of the rules used. This
section also describes the translations that are performed by
the compiler. Section 4 compares this work to other work in
related areas, and Section 5 provides some conclusions. The
grammar of JFlow is provided for reference in Appendix A.

This section presents an overview of the JFlow language and
a rationale for its design. JFlow is an extension to the Java
language that incorporates the decentralized label model. In
Section 2.1, the previous work on the decentralized label
model [ML97, ML98] is reviewed. The language descrip-
tion in the succeeding sections focuses on the differences
between JFlow and Java, since Java is widely known and
well-documented [GJS96].

In the decentralized label model, data values are labeled
with security policies. A label is a generalization of the
usual notion of a security class; it is a set of policies that
restrict the movement of any data value to which the label
is attached. Each policy in a label has an owner O, which
is a principal whose data was observed in order to create the
value. Principals are users and other authority entities such
as groups or roles. Each policy also has a set of readers,
which are principals that O allows to observe the data. A
single principal may be the owner of multiple policies and
may appear in multiple reader sets.

For example, the label = 1: 1, 2; 2: 2, 3 has two
policies in it (separated by semicolons), owned by 1 and 2

respectively. The policy of principal 1 allows 1 and 2 to
read; the policy of principal 2 allows 2 and 3 to read. The
effective reader set contains only the common reader 2. The
least restrictive label possible is the label , which contains
no policies. Because no principal expresses a privacy interest
in this label, data labeled by is completely public as far as
the labeling scheme is concerned.

There are two important intuitions behind this model: first,
data may only be read by a user of the system if all of the
policies on the data list that user as a reader. The effective
policy is an intersection of all the policies on the data. Second,
a principal may choose to relax a policy that it owns. This
is a safe form of declassification — safe, because all of the
other policies on the data are still enforced.

A process has the authority to act on behalf of some (pos-
sibly empty) set of principals. The authority possessed by
a process determines the declassifications that it is able to
perform. Some principals are also authorized to act for other
principals, creating a principal hierarchy. The principal hi-
erarchy may change over time, but revocation is assumed to
occur infrequently. The meaning of a label is affected by the
current principal hierarchy. For example, if the principal
can act for the principal , then if is listed as a reader by
a policy, is effectively listed by that policy as well. The
meaning of a label under different principal hierarchies is
discussed extensively in an earlier paper [ML98].

Every variable is statically bound to a static label. (The
alternative, dynamic binding, largely prevents static analysis
and can be simulated in JFlow if needed.) If a value has label

1 and a variable has label 2, we can assign the value to
the variable (:) only if 1 can be relabeled to 2, which
is written as 1 2. The definition of this binary relation
on labels is intuitive: 1 2 if for every policy in 1, there
is some policy in 2 that is at least as restrictive [ML98].
Thus, the assignment does not leak information.

In this system, the label on is assigned by the programmer
who writes the code that uses . The power to select a label
for does not give the programmer the ability to leak ,
because the static checker permits the assignment to only if
the label on is sufficiently restrictive. After the assignment,
the static binding of the label of prevents leakage. (Changes
in who can read the value in are effected by modifying the
principal hierarchy, but changes to the principal hierarchy
require appropriate privilege.)

2

Computations (such as multiplying two numbers) cause
joining () of labels; the label of the result is the least restric-
tive label that is at least as restrictive as the labels of the values
used in the computation; that is, the least upper bound of the
labels. The join of two sets of policies is simply the union
of the sets of policies. The relation generates a lattice of
equivalence classes of labels with as the LUB operator.
Lattice properties are important for supporting automatic la-
bel inference and label polymorphism [ML97, ML98]. The
notation is also used as a shorthand for
(which does not mean that the labels are equal [ML98]).

Declassification provides an escape hatch from strict infor-
mation flow tracking. If the authority of a process includes a
principal , a value may be declassified by dropping policies
owned by principals that acts for. The ability to declassify
provides the opportunity for to choose to release informa-
tion based on a more sophisticated analysis.

All practical information flow control systems provide the
ability to declassify data because strict information flow con-
trol is too restrictive to write real applications. More com-
plex mechanisms such as inference controls [Den82] often
are used to decide when declassification is appropriate. In
previous systems, declassification is performed by a trusted
subject: code having the authority of a highly trusted princi-
pal. One key advantage of the new label structure is that it
is decentralized: it does not require that all other principals
in the system trust a principal ’s declassification decision,
since cannot weaken the policies of principals that it does
not act for.

This section begins the description of the new work in this pa-
per (the JFlow programming language), which incorporates
the label model just summarized. In a JFlow program, a label
is denoted by a label expression, which is a set of component
expressions. As in Section 2.1, a component expression of
the form owner: reader1, reader2, denotes a policy. A
label expression is a series of component expressions, sep-
arated by semicolons, such as 1: 1, 2; 2: 2, 3 . In a
program, a component expression may take additional forms;
for example, it may be simply a variable name. In that case,
it denotes the set of policies in the label of that variable. The
label contains a single component; the meaning of the
label is that the value it labels should be as restricted as the
variable is. The label contains two components,
indicating that the labeled value should be as restricted as
is, and also that the principal restricts the value to be read
by at most .

In JFlow, every value has a labeled type that consists of
two parts: an ordinary Java type such as , and a label that
describes the ways that the value can propagate. The type and
label parts of a labeled type act largely independently. Any
type expression t may be labeled with any label expression

l . This labeled type expression is written as t l ; for
example, the labeled type represents an integer that
principal owns and only can read (the owner of a policy
is always implicitly a reader).

The goal of type checking is to ensure that the apparent,

Figure 1: Implicit flow example

static type of each expression is a supertype of the actual,
run-time type of every value it might produce; similarly, the
goal of label checking is to ensure that the apparent label of
every expression is at least as restrictive as the actual label
of every value it might produce. In addition, label checking
guarantees that, except when declassification is used, the
apparent label of a value is at least as restrictive as the actual
label of every value that might affect it. In principle, the
actual label could be computed precisely at run time. Static
checking ensures that the apparent, static label is always
a conservative approximation of the actual label. For this
reason, it is typically unnecessary to represent the actual
label at run time.

A labeled type may occur in a JFlow program in most
places where a type may occur in a Java program. For exam-
ple, variables may be declared with labeled type:

The label may always be omitted from a labeled type, as in
the declaration of . If omitted, the label of a local variable
is inferred automatically based on its uses. In other contexts
where a label is omitted, a context-dependent default label
is generated. For example, the default label of an instance
variable is the public label . Several other cases of default
label assignment are discussed later.

In JFlow, the label of an expression’s value varies depending
on the evaluation context. This somewhat unusual property
is needed to prevent leaks through implicit flows: channels
created by the control flow structure itself.

Consider the code segment of Figure 1. By examining the
value of the variable after this segment has executed, we
can determine the value of the secret boolean , even though

has only been assigned constant values. The problem is the
assignment , which should not be allowed.

To prevent information leaks through implicit flows, the
compiler associates a program-counter label () with every
statement and expression, representing the information that
might be learned from the knowledge that the statement or
expression was evaluated. In this program, the value of
during the consequent of the statement is . After the

statement, , since no information about can be
deduced from the fact that the statement after the statement
is executed. The label of a literal expression (e.g.,) is the
same as its , or in this case. The unsafe assignment

3

Figure 2: Switch label

() in the example is prevented because the label of
() is not at least as restrictive as the label of in this
expression, which is , or .

In JFlow, labels are not purely static entities; they may also be
used as values. First-class values of the new primitive type

represent labels. This functionality is needed when
the label of a value cannot be determined statically. For
example, if a bank stores a number of customer accounts as
elements of a large array, each account might have a different
label that expresses the privacy requirements of the individual
customer. To implement this example in JFlow, each account
can be labeled by an attached dynamic label value.

A variable of type may be used both as a first-class
value and as a label for other values. For example, methods
can accept arguments with run-time labels, as in the following
method declaration:

In this example, the component expression denotes the
label contained in the variable , rather than the label of
the variable . To preserve safety, variables of type
(such as) may be used to construct labels only if they are
immutable after initialization; in Java terminology, if they are

. (Unlike in Java, arguments in JFlow are always .)
The important power that run-time labels add is the ability

to be examined at run-time, using the statement.
An example of this statement is shown in Figure 2. The code
in this figure attempts to transfer an integer from the variable

to the variable . This transfer is not necessarily safe,
because ’s label, , is not known statically. The statement
examines the run-time label of the expression , and executes
one of several statements. The statement executed is
the first whose associated label is at least as restrictive as
the expression label; that is, the first statement for which the
assignment of the expression value to the declared variable
(in this case,) is legal. If it is the case that : , the
first arm of the switch will be executed, and the transfer will
occur safely via . Otherwise, the code throws an exception.

Since is a run-time value, information may be transferred
through it. This can occur in the example by observing which
of the two arms of the are executed. To prevent this
information channel from becoming an information leak, the

in the first arm is augmented to include ’s label, which is
. The code passes static checking only if the assignment

from to is legal; that is, if .

Figure 3: Bank account using run-time principals

Run-time labels can be manipulated statically, though con-
servatively; they are treated as an unknown but fixed label.
The presence of such opaque labels is not a problem for static
analysis, because of the lattice properties of these labels. For
example, given any two labels 1 and 2 where 1 2,
it is the case for any third label 3 that 1 3 2 3.
This implication makes it possible for an opaque label 3 to
appear in a label without preventing static analysis. Using it,
unknown labels, including run-time labels, can be propagated
statically.

JFlow has capability-like access control that is both dynam-
ically and statically checked. A method executes with some
authority that has been granted to it. The authority is es-
sentially the capability to act for some set of principals, and
controls the ability to declassify data. Authority also can be
used to build more complex access control mechanisms.

At any given point within a program, the compiler under-
stands the code to be running with the ability to act for some
set of principals, called the static authority of the code at that
point. The actual authority may be greater, because those
principals may be able to act for other principals.

The principal hierarchy may be tested at any point using the
statement. The statement 1, 2 S executes

the statement S if the principal 1 can act for the principal
2. Otherwise, the statement S is skipped. The statement

S is checked under the assumption that this acts-for relation
exists: for example, if the static authority includes 1, then
during static checking of S, it is augmented to include 2.

A program can use its authority to declassify a value. The
expression relabels the result of an expres-
sion with the label . Declassification is checked statically,
using the static authority at the point of declassification. The

expression may relax policies owned by principals
in the static authority.

Like labels, principals may also be used as first-class values
at run time. The type represents a principal that is a
value. A variable of type may be used as if it
were a real principal. For example, a policy may use a
variable of type to name an owner or reader. These
variables may also be used in statements, allowing
static reasoning about parts of the principal hierarchy that
may vary at run time. When labels are constructed using
run-time principals, declassification may also be performed
on these labels.

4

Figure 4: Parameterization over labels

Run-time principals are needed in order to model systems
that are heterogeneous with respect to the principals in the
system, without resorting to declassification. For example,
a bank might store bank accounts with the structure shown
in Figure 3, using run-time principals rather than run-time
labels. With this structure, each account may be owned by
a different principal (the customer whose account it is). The
security policy for each account has similar structure but is
owned by the principal in the instance variable .
Code can manipulate the account in a manner that is generic
with respect to the contained principal, but can also determine
at run-time which principal is being used. The principal

may be manipulated by an statement, and the
label may be used by a statement.

Even in the type domain, parameterizing classes is important
for building reusable data structures. It is even more impor-
tant to have polymorphism in the information flow domain;
the usual way to handle the absence of statically-checked type
polymorphism is to perform dynamic type casts, but this ap-
proach works poorly when applied to information flow since
new information channels are created by dynamic tests.

To allow usable data structures in JFlow, classes may be
parameterized to make them generic with respect to some
number of labels or principals. Class and interface decla-
rations are extended to include an optional set of explicitly
declared parameters.

For example, the Java class is translated to JFlow
as shown in Figure 4. is parameterized on the label

, which represents the label of the contained elements. As-
suming that and are appropriately defined, the
types and would represent
vectors of elements of differing sensitivity. Without the abil-
ity to parameterize classes on labels, it would be necessary
to reimplement for every distinct element label.

The addition of label and principal parameters to
JFlow makes parameterized classes into simple dependent
types [Car91], since types contain values. To ensure that
these dependent types have a well-defined meaning, only
immutable variables may be used as parameters.

Note that even if , it is not the case

that , since subtyping is
invariant in the parameter (the subtype relation is denoted
here by). When such a relation is sound, the parameter
may be declared as a rather than as a ,
which places additional restrictions on its use. For example,
no method argument or mutable instance variable may be
labeled using the parameter.

A class always has one implicit label parameter: the label
, which represents the label on an object of the class.

Because 1 2 implies that 1 acts like a subtype of
2 , the label of is necessarily a covariant parameter,

and its use is restricted in the same manner as with other
covariant parameters.

A class may have some authority granted to its objects by
adding an clause to the class header. The author-
ity clause may name principals external to the program, or
principal parameters. If the authority clause names external
principals, the process that installs the class into the system
must have the authority of the named principals. If the au-
thority clause names principals that are parameters of the
class, the code that creates an object of the class must have
the authority of the actual principal parameters used in the
call to the constructor. If a class has a superclass , any

in must be covered by the clause of
. It is not possible to obtain authority by inheriting from a

superclass.

Like class declarations, JFlow method declarations also con-
tain some extensions. There are a few optional annotations
to manage information flow and authority delegation. A
method header has the following syntax (in the form of the
Java Language Specification [GJS96]):

MethodHeader:
Modifiersopt LabeledType Identifier

BeginLabelopt FormalParameterListopt EndLabelopt

Throwsopt WhereConstraintsopt

FormalParameter:
LabeledType Identifier OptDims

The return value, the arguments, and the exceptions may
each be individually labeled. One subtle change from Java
is that arguments are always implicitly , allowing them
to be used as type parameters. This change is made for the
convenience of the programmer and does not significantly
change the power of the language.

There are also two optional labels called the begin-label
and the end-label. The begin-label is used to specify any
restriction on at the point of invocation of the method.
The end-label — the final — specifies what information
can be learned by observing whether the method terminates
normally. Individual exceptions and the return value itself
also may have their own distinct labels, which provides fine-
grained tracking of information flow.

In Figure 5 are some examples of JFlow method declara-
tions. When labels are omitted in a JFlow program, a default
label is assigned. The effect of these defaults is that often
methods require no label annotations whatever. Labels may

5

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.

The default label for a return value is the end-label, joined
with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented from causing real side effects; it may of course modify
local variables and mutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.

Unlike in Java, the method may contain a list of constraints
prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
the method is authorized to act for. The static authority at
the beginning of the method includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling code may also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.

The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered, we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.

The statement is conditional on the elements of
and on the variables and , whose labels

are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

must occur before call to super()

checked assuming lb LL

Figure 7: The class

also must have this label in order to allow the assign-
ment . This label prevents from being
returned directly as a result, since the label of the return value
is the default label, . Finally, the method
declassifies to this desired label, using its compiled-in
authority to act for . Note that the exceptions

and must be ex-
plicitly caught, since the method does not explicitly declare
them. More precise reasoning about the possibility of excep-
tions would make JFlow code more convenient to write.

Otherwise there is very little difference between this code
and the equivalent Java code. Only three annotations have
been added: an clause stating that the principal

trusts the code, a expression, and a label on
the elements of . The labels for all local variables
and return values are either inferred automatically or assigned
sensible defaults. The task of writing programs is made easier
in JFlow because label annotations tend to be required only
where interesting security issues are present.

In this method, the implementor of the class has decided
that declassification of results in an acceptably small
leak of information. Like all login procedures, this method
does leak information, because exhaustively trying pass-
words will eventually extract the passwords from the pass-
word file. However, assuming that the space of passwords
is large and passwords are difficult to guess, the amount of
information gained in each trial is far less than one bit. Rea-
soning processes about acceptable leaks of information lie
outside the domain of information flow control, but in this
system, such reasoning processes can be accommodated in a
natural and decentralized manner.

The class provides a convenient way of managing
run-time labels, as in the bank account example mentioned
earlier. Its implementation is shown in Figure 7. As the

implementation shows, a is an immutable pair
containing a value of type and a label
that protects the value. Its value can be extracted with the

method, but the caller must provide a label to use for
extraction. If the label is insufficient to protect the data,
an exception is thrown. A value of type behaves
very much like a value in dynamic-checked information flow
systems, since it carries a run-time label. A has an
obvious analogue in the type domain: a value dynamically
associated with a type tag (e.g., the type [ACPP91]).

One key to making convenient is to label the
instance variable with . Without this labeling,

would need an additional explicit covariant label pa-
rameter to label with.

JFlow is not completely a superset of Java. Certain features
have been omitted to make information flow control tractable.
Also, JFlow does not eliminate all possible information leaks.
Certain covert channels (particularly, various kinds of timing
channels) are difficult to eliminate. Prior work has addressed
static control of timing channels, though the resulting rules
are restrictive [AR80, SV98]. Other covert channels arise
from Java language features:

JFlow does not prevent threads from communi-
cating covertly via the timing of asynchronous modifications
to shared objects. This covert channel can be prevented by
requiring only single-threaded programs.

JFlow cannot prevent threads from
improperly gaining information by timing code with the sys-
tem clock, except by removing access to the clock.

In Java, the built-in implementation of the
method, provided by the class , can be used

to communicate information covertly. Therefore, in JFlow
every class must implement its own .

The order of static variable initializa-
tion can be used to communicate information covertly. In
JFlow, this channel is blocked by ruling out static variables.
However, static methods are legal. This restriction does not
significantly hurt expressive power, since a program that uses
static variables usually can be rewritten as a program in which
the static variables are instance variables of an object. The
order of initialization of these objects then becomes explicit
and susceptible to analysis.

Finalizers are run in a separate thread from
the main program, and therefore can be used to communicate
covertly. Finalizers are not part of JFlow.

An can be
used to communicate information covertly, by condition-
ally allocating objects until the heap is exhausted. JFlow
treats this error as fatal, preventing it from communicating
more than a single bit of information per program execu-
tion. Other exhaustion errors such as
are treated similarly.

A JFlow program can
change its run time based on private information it has ob-

7

served. As an extreme example, it can enter an infinite loop.
JFlow does not attempt to control these channels.

Java allows users to define
exceptions that need not be declared in method headers
(unchecked exceptions), although this practice is described
as atypical [GJS96]. In JFlow, there are no unchecked ex-
ceptions, since they could serve as covert channels.

JFlow supports
the run-time cast and operators of standard Java,
but they may only be invoked using classes that lack parame-
ters. The reason for this restriction is that information about
the parameters is not available at run time. These operators
could be permitted if the parameters were statically known
to be matched, but this is not currently supported.

JFlow is not backward com-
patible with Java, since existing Java libraries are not flow-
checked and do not provide flow annotations. However, in
many cases, a Java library can be wrapped in a JFlow library
that provides reasonable annotations.

This section covers the static checking that the JFlow com-
piler performs as it translates code, and the translation process
itself.

An important limitation of earlier attempts to create lan-
guages for static flow checking has been the absence of usable
exceptions. For example, in Denning’s original work on static
flow checking, exceptions terminated the program [DD77]
because any other treatment of exceptions seemingly leaked
information. Subsequent work has avoided exceptions en-
tirely.

It might seem unnecessary to treat exceptions directly,
since in many languages, a function that generates excep-
tions can be desugared into a function that returns a discrim-
inated union or oneof. However, there are problems with
this approach. The obvious way to handle oneofs causes all
exceptions to carry the same label — an unacceptable loss of
precision. Also, Java exceptions are actually objects, and the

statement functions like a typecase. This model
cannot be translated directly into a oneof.

Nevertheless, it is useful to consider how oneof types might
be handled in JFlow. The obvious way to treat oneof types
is by analogy with record types. Each arm of the oneof has
a distinct label associated with it. In addition, there is an
added integer field that indicates which of the arms of
the oneof is active. The problem with this model is that
every assignment to the oneof will require that ,
and every attempt to use the oneof will implicitly read .
As a result, every arm of the oneof will effectively carry the
same label. For modeling exceptions, this is unacceptable.

For each expression or statement, the static checker deter-
mines its path labels, which are the labels for the informa-
tion transmitted by various possible termination paths: nor-
mal termination, termination through exceptions, termination

through a return statement, and so on. This fine-grained anal-
ysis avoids the unnecessary restrictiveness that would be pro-
duced by desugaring exceptions. Each exception that can be
raised by evaluating a statement or expression has a possibly
distinct label that is transferred to the of statements
that might intercept it. Even finer resolution is provided for
normal termination and for termination; for example,
the label of the value of an expression may differ from the
label associated with normal termination. Finally, termina-
tion of a statement by a or statement is also
tracked without confusing distinct or targets.

The path labels for a statement or expression are repre-
sented as a map from symbols to labels. Each mapping
represents a termination path that the statement or expres-
sion might take, and the label of the mapping indicates what
information may be transmitted if this path is known to be
the actual termination path. The domain of the map includes
several different kinds of entities:

The symbol , which represents normal termination.

The symbol , which represents termination through a
statement.

Classes that inherit from . A mapping from
a class represents termination by an exception.

The symbols and represent the labels of the nor-
mal value of an expression and the return value of a
statement, respectively. They do not represent paths
themselves, but it is convenient to include them as part
of the map. Their labels are always at least as restrictive
as the labels of the corresponding paths.

A tuple of the form represents termination
by executing a named or statement that
jumps to the target . A or statement
that does not name a target is represented by the tuple

. These tuples are always mapped to the label
since the static checking rules do not use the actual

label.

Path labels are denoted by the letter in this paper, and
members of the domain of (paths) are denoted by . The
expression denotes the label that maps to, and the
expression : denotes a new map that is exactly
like except that is bound to . Path labels may also
map a symbol to the pseudo-label , indicating that the
statement cannot terminate through the path . The label
acts as the bottom of the label lattice; for all labels

, including the label . The special path labels map
all paths to , corresponding to an expression that does not
terminate.

The JFlow compiler performs two kinds of static checking
as it compiles a program: type checking and label checking.
These two aspects of checking cannot be entirely disentan-
gled, since labels are type constructors and appear in the rules
for subtyping. However, the checks needed to show that a

8

id

interp-T class-env

Figure 8: Subtype rules

statement or expression is safe largely can be classified as
either type or label checks. This paper focuses on the rules
for checking labels, since the type checks are almost exactly
the same as in Java.

There are several kinds of judgements made during static
checking. The judgment : means that has
type in environment . The judgment : is
the information-flow counterpart: it means that has path
labels in environment . The symbol is used to de-
note inferences in the type domain. The environment
maps identifiers (e.g., class names, parameter names, vari-
able names) to various kinds of entities. As with path labels,
the notation is the binding of symbol in . The nota-
tion : is a new environment with rebound to .
In the rules given here, it is assumed that the declarations of
all classes are found in the global environment, .

A few more comments on notation will be helpful at this
point. The use of large brackets indicates an optional syntac-
tic element. The letter represents a type, and represents
a type expression. The letter represents the name of a
class. The letter represents a label, and represents a
label expression. represents an labeled type expression;
that is, a pair containing a type expression and an optional
label expression. The function interp-T converts type
expressions to types, and the function interp-L converts
label expressions to labels. The letter represents a variable
name. The letter represents a formal parameter of a class,
and the letter represents an actual parameter used in an
instantiation of a parameterized class.

There are some interesting interactions between type and
label checking. Consider the judgment , mean-
ing “ is a subtype of ”. This judgement must be made in
JFlow, as in all languages with subtyping. Here, and are
ordinary unlabeled types. The subtype rule, shown in Fig-
ure 8, is as in Java, except that it must take account of class
parameters. If or is an instantiation of a parameterized
class, subtyping is invariant in the parameters except when a
label parameter is declared to be covariant. This subtyping
rule is the first one shown in Figure 8. The function class-env,
used in the figure, generates an extension of the global envi-
ronment in which the formal parameters of a class (if any) are

true

literal : : :

true

; : :

uid

: :

:

:

uid

:

1 : 1

extend 1 : 1 2 : 2

1 : 2

1; 2 :

1 2 1 2

Figure 9: Some simple label-checking rules

bound to the actual parameters: param-id :
Using this rule, (from Figure 4) would be a

subtype of only if . Java arrays
(written as) are treated internally as a special type
with two parameters, and . As in Java, they are covariant
in , but like most JFlow classes, invariant in . User-defined
types may not be parameterized on other types.

If and are not instantiations of the same class, it is nec-
essary to walk up the type hierarchy from to , rewriting
parameters, as shown in the second rule in Figure 8. Together,
the two rules inductively prove the appropriate subtype rela-
tionships.

Let us consider a few examples of static checking rules.
Space restrictions prevent presentation of all the rules, but a
complete description of the static checking rules of JFlow is
available [Mye99].

Consider Figure 9, which contains some of the most basic
rules for static checking. The first rule shows that a literal
expression always terminates normally and that its value is
labeled with the current , as described earlier. The sec-
ond rule shows that an empty statement always terminates
normally, with the same as at its start.

The third rule shows that the value of a variable is labeled
with both the label of the variable and the current . Note
that the environment maps a variable identifier to an entry

9

:

: :

: :

1 exc

2 exc 1

exc 2

:

:

:

: 1 : 1

: 2 : 2

: 1 2

1 2 :

fresh-variable

: :

:

: :

:

:

:

: :

: :

:

paths

:

:

paths all symbols except ,

exc : : :

Figure 10: More label-checking rules

of either the form uid or uid ,
where is the variable’s type, is its label, and uid is a
unique identifier distinguishing it from other variables of the
same name.

The fourth rule covers assignment to a variable. Assign-

ment is allowed if the variable’s label is more restrictive than
that of the value being assigned (which will include the cur-
rent). Whether one label is more restrictive than other is
inferred using the current environment, which contains in-
formation about the static principal hierarchy. The complete
rule for checking this statement would have an additional
antecedent : , but such type-checking rules have
been omitted in the interest of space.

The final rule in Figure 9 covers two statements 1 and
2 performed in sequence. The second statement is executed

only if the first statement terminated normally, so the correct
for checking the second statement is the normal path label

of the first statement (1). The function extend extends
the environment to add any local variable declarations in
the statement 1. The path labels of the sequence must be
at least as restrictive as path labels of both statements; this
condition is captured by the operator , which merges two
sets of path labels, joining all corresponding paths from both.

Figure 10 contains some more complex rules. The rule for
array element assignment mirrors the order of evaluation of
the expression. First, the array expression is evaluated,
yielding path labels . If it completes normally, the index
expression is evaluated, yielding . Then, the assigned
value is evaluated. Java checks for three possible exceptions
before performing the assignment. The function exc, defined
at the bottom, is used to simplify these conditions. This
function creates a set of path labels that are just like except
that they include an additional path, the exception , with
the path label . Since observation of normal termination
() or the value on normal termination () is conditional on
the exception not being thrown, exc joins the label to these
two mappings as well. Finally, avoiding leaks requires that
the label on the array elements () is at least as restrictive
as the label on the information being stored ().

The next rule shows how to check an statement. First,
the path labels of the expression are determined. Since
execution of 1 or 2 is conditional on , the for these
statements must include the value label of , . Fi-
nally, the statement as a whole can terminate through any of
the paths that terminate , 1, or 2— except normal ter-
mination of , since this would cause one of 1 or 2 to be
executed. If the statement has no clause, the statement

2 is considered to be an empty statement, and the second
rule in Figure 9 is applied.

The next rule, for the statement, is more subtle be-
cause of the presence of a loop. This rule introduces a label
variable to represent the information carried by the con-
tinuation of the loop through various paths. represents an
unknown label that will be solved for later. It is essentially a
loop invariant for information flow. may carry information
from exceptional termination of or , or from or

statements that occur inside the loop. An entry is
added to the environment for the tuple to capture
information flows from any or statements
within the loop. The rules for checking and ,
shown below the rule for , use these environment entries
to apply the proper restriction on information flow.

Assuming that is the entering label, is the
final label. The final condition requires that may be at

10

:

:

exc :

:

:

exc-label

: : fresh-uid :

uncaught

:

1 : 1 2 : 2

1 : 2

1 2 :

exc-label
:

uncaught

Figure 11: Exception-handling rules

most as restrictive as , which is what establishes the loop
invariant.

The last rule in Figure 10 applies to any statement, and is
important for relaxing restrictive path labels. It is intuitive: if
a statement (or a sequence of statements) can only terminate
normally, the at the end is the same as the at the be-
ginning. The same is true if the statement can only terminate
with a statement. This rule is called the single-path
rule. It would not be safe for this rule to apply to exception
paths. To see why, suppose that a set of path labels formally
contains only a single exception path . However, that path
might include multiple paths consisting of exceptions that are
subclasses of . These multiple paths can be discriminated
using a statement. The unusual Java exception
model prevents the single-path rule from being applied to
exception paths.

However, Java is a good language to extend for static flow
analysis in other ways because it fully specifies evaluation
order. This property makes static checking of information
flow simpler, because the rules tend to encode all possible
evaluation orders. If there were non-determinism in evalua-
tion order, it could be encoded by adding label variables in a
manner similar to the rule for the statement.

Exceptions can be thrown and caught safely in JFlow using
the usual Java constructs. Figure 11 shows the rule for the

statement, a statement that lacks a
clause, and a statement. (A statement with
both clauses and a clause can be desugared into

Figure 12: Implicit flow using

a inside a .) The rule for is
straightforward.

The idea behind the rule is that each
clause is executed with a that includes all the paths that
might cause the clause to be executed: all the paths that are
exceptions where the exception class is either a subclass or
a superclass of the class named in the clause. The
function exc-label joins the labels of these paths. The path
labels of the whole statement merge all the path labels of the
various catch clauses, plus the paths from that might not
be caught by some clause, which include the normal
termination path of if any.

The rule is very similar to the rule for sequenc-
ing two statements. One difference is that the statement 2

is checked with exactly the same initial that 1 is, since
2 is executed no matter how 1 terminates.
To see how these exception rules work, consider the code

in Figure 12. In this example, and are vari-
ables. This code transfers the information in to by us-
ing an implicit flow resulting from an exception. In fact,
the code is equivalent to the assignment . Using the
rule of Figure 11, the path labels of the statement
are , so the path labels of the statement are

. The assignment is
checked with , so the code is allowed only
if . This restriction is correct since it is exactly
what the equivalent assignment statement would have re-
quired. Finally, applying both the try-catch rule here and the
single-path rule from Figure 10, the value of after the code
fragment is seen to be the same as at its start. Throwing and
catching an exception does not necessarily taint subsequent
computation.

An interesting aspect of checking JFlow is checking the
statement, which inspects a dynamic label at run

time. The inference rule for checking this statement is given
in Figure 13. Intuitively, the statement tests
the equation for every arm until it finds one for
which the equation holds, and executes it. However, this test
cannot be evaluated either statically or at run time. Therefore,
the test is split into two stronger conditions: one that can be
tested statically, and one that can be tested dynamically. This
rule naturally contains the static part of the test.

Let be the join of all possible run-time-
representable components (i.e., components that do not
mention formal label or principal parameters). The
static test is that (equiva-

11

:

interp-L

:

interp-T

0

1 label

: : fresh-uid :

:

Figure 13: Inference rule for

lently,); the dynamic test is that
. Together, these two tests im-

ply the full condition .
The test itself may be used as an information channel, so

after the check, the must include the labels of and
every up to this point. This rule uses the label function
to achieve this. When applied to a label , it generates
a new label that joins together the labels of all variables
that are mentioned in . However, the presence of label in
constraint equations does not change the process of solving
label constraints in any fundamental way.

Let us now look at some of the static checking associated
with objects. Static checking in object-oriented languages is
often complex, and the various features of JFlow only add to
the complexity. This section shows how, despite this com-
plexity, method calls and constructor calls (via the operator

) are checked statically.
The rules for checking method and constructor calls are

shown in Figures 14 and 15. Figure 14 defines some generic
checking that is performed for all varieties of calls, and Fig-
ure 15 defines the rules for checking ordinary method calls,
static method calls, and constructor calls.

To avoid repetition, the checking of both static and non-
static method calls, and also constructor calls, is expressed
in terms of the predicate call, which is defined in Figure 14.
This predicate is in turn expressed in terms of two predicates:
call-begin and call-end.

The predicate call-begin checks the argument expressions
and establishes that the constraints for calling the method are
satisfied. In this rule, the functions type-part and label-part
interpret the type and label parts of a labeled type . The
rule determines the begin label , the default return label

, and the argument environment , which binds all the
method arguments to appropriately labeled types. Invoking a
method requires evaluation of the arguments , producing
corresponding path labels . The argument labels are bound
in to labels , so the line () ensures that the
actual arguments can be assigned to the formals. The begin-
label is also required to be more restrictive than the

call-begin

call-end :

call :

:

0 :

: 1 :

fresh-variable

uid fresh-uid

class-env

: type-part uid

interp-L max

labeled label-part

max

satisfies-constraints :

call-begin

interp interp-P-call

: true

: interp

1 2 : interp 1 interp 2

satisfies-constraints

:

: interp-L

labeled label-part

type-part class-env

: :

: label-part

call-end :

Figure 14: Checking calls

after evaluating all of the arguments, which is max .
The call site must satisfy all the constraints im-

posed by the method, which is checked by the predicate
satisfies-constraints. The rule for this predicate, also in Fig-
ure 14, uses the function interp-P-call, which maps iden-
tifiers used in the method constraints to the corresponding
principals. To perform this mapping, the function needs en-
vironments corresponding to the calling code (), the called
code (), and a special environment that binds the actual
arguments (). The environment entry contains
the set of principals that the code is known statically to act
for. The judgement 1 2 means that 1 is known
statically to act for 2. (The static principal hierarchy is also

12

:

:

signature

:

: call :

:

interp-T

:

signature

call :

:

interp-T

:

signature

:

:

call :

parameters interp-P class-env

:

Figure 15: Rules for specific calls

placed in the environment.)
Finally, the predicate call-end produces the path labels

of the method call by assuming that the method returns the
path labels that its signature claims. The label is used
as the label of the return value in the case where the return
type, , is not labeled. It joins together the labels of all of
the arguments, since typically the return value of a function
depends on all of its arguments.

The rules for the various kinds of method calls are built on
top of this framework, as shown in Figure 15. In these rules,
the function signature obtains the signature of the named
method from the class. The rule for constructors contains
two subtle steps: first, constructors are checked as though
they were static methods with a similar signature. Second,
a call to a constructor requires that the caller possess the
authority of all principals in the authority of the class that are
parameters. The caller does not need to have the authority of
external principals named in the clause.

As the rules for static checking are applied, they generate a
constraint system of label variables for each method [ML97].
For example, the assignment rule of Figure 9 generates a
constraint . All of the constraints are of the form

1 1 . These constraints can be
split into individual constraints 1 because
of the lattice properties of labels. The individual terms in the

1 2

1 2

;

1

1

Figure 16: Interesting JFlow translations

constraints may be policies, label variables, label parameters,
dynamic labels, or expressions label for some label .

The constraints can be efficiently solved, using a modifi-
cation to a lattice constraint-solving algorithm [RM96] that
applies an ordering optimization [HDT87] shown to produce
the best of several commonly-used iterative dataflow algo-
rithms [KW94]. The approach is to initialize all variables
in the constraints with the most restrictive label () and it-
eratively relax their labels until a satisfying assignment or a
contradiction is found. The label does not create problems
because it is monotonic. The relaxation steps are ordered by
topologically sorting the constraints and looping on strongly-
connected components. The number of iterations required is

where is the maximum height of the lattice struc-
ture [RM96], and also where is the maximum back
edges in depth-first traversal of the constraint dependency
graph [HDT87]. Both and seem likely to be bounded for
reasonable programs. The observed behavior of the JFlow
compiler is that constraint solving is a negligible part of run
time.

The JFlow compiler is a static checker and source-to-source
translator. Its output is a standard Java program. Most of the
annotations in JFlow have no run-time representation; trans-
lation erases them, leaving a Java program. For example,
all type labels are erased to produce the corresponding unla-
beled Java type. Class parameters are erased. The
expression and statement are replaced by their contained ex-
pression or statement.

Uses of the built-in types and are translated
to the Java types and ,
respectively. Variables declared to have these types remain
in the translated program. Only two constructs translate to
interesting code: the and statement,
which dynamically test principals and labels, respectively.
The translated code for each is simple and efficient, as shown
in Figure 16. Note that the translation rule for
uses definitions from Figure 13. As discussed earlier, the run-
time check is 1 , which in effect is
a test on labels that are completely representable at run time.

13

The translated code uses the methods and
of the classes and ,

respectively. These methods are accelerated by a hash-table
lookup into a cache of results, so the translated code is fast.

There has been much work on information flow control and
on the static analysis of security guarantees. The lattice
model of information flow comes from the early work of Bell
and LaPadula[BL75] and Denning [Den76]. Most subse-
quent information control models use dynamic labels rather
than static labels and therefore cannot be checked statically.
The decentralized label model has similarities to the ORAC
model [MMN90]: both models provide some approxima-
tion of the “originator-controlled release” labeling used by
the U.S. DoD/Intelligence community, although the ORAC
model is dynamically checked.

Static analysis of security guarantees also has a long his-
tory. It has been applied to information flow [DD77, AR80],
to access control [JL78, RSC92], and to integrated models
[Sto81]. There has recently been more interest in provably-
secure programming languages, treating information flow
checks in the domain of type checking. Some of this work
has focused on formally characterizing existing information
flow and integrity models [PO95, VSI96, Vol97]. Smith and
Volpano have recently examined the difficulty of statically
checking information flow in a multithreaded functional lan-
guage [SV98], which JFlow does not address. However, the
rules they define prevent the run time of a program from de-
pending in any way on non-public data. Abadi [Aba97] has
examined the problem of achieving secrecy in security proto-
cols, also using typing rules, and has shown that encryption
can be treated as a form of safe declassification through a
primitive encryption operator.

Heintze and Riecke [HR98] have shown that information-
flow-like labels can be applied to a simple language with
reference types (the SLam calculus). They show how to
statically check an integrated model of access control, infor-
mation flow control, and integrity. Their labels include two
components: one which enforces conventional access con-
trol, and one that enforces information flow control. Their
model has the limitation that it is entirely static: it has no
run-time access control, no declassification, and no run-time
flow checking. It also does not provide label polymorphism
or objects. Heintze and Riecke prove some useful soundness
theorems for their model. This step would be desirable for
JFlow, but important features like objects, inheritance and
dependent types make formal proofs of correctness difficult
at this point.

An earlier paper [ML97] introduced the decentralized
label model and suggested a simple language for writing
information-flow safe programs. JFlow extends the ideas of
that simple language in several important ways and shows
how to apply them to a real programming language, Java.
JFlow adds support for objects, fine-grained exceptions,
explicit parameterization, and the full decentralized label
model [ML98]. Static checking is described by formal in-
ference rules that specify much of the JFlow compiler. The

performance of the label inference algorithm (the constraint
solver) also has been improved.

Privacy is becoming an increasingly important security con-
cern, and static program checking appears to be the only
technique that can provide this security with reasonable effi-
ciency. This paper has described the new language JFlow, an
extension of the Java language that permits static checking of
flow annotations. To our knowledge, it is the first practical
programming language that allows this checking. The goal
of this work has been to add enough power to the static check-
ing framework to allow reasonable programs to be written in
a natural manner.

JFlow addresses many of the limitations of previous work
in this area. It supports many language features that have
not been previously integrated with static flow checking, in-
cluding mutable objects (which subsume function values),
subclassing, dynamic type tests, dynamic access control, and
exceptions.

Avoiding unnecessary restrictiveness while supporting a
complex language has required the addition of sophisticated
language mechanisms: implicit and explicit polymorphism,
so code can be written in a generic fashion; dependent types,
to allow dynamic label checking when static label checking
would be too restrictive; static reasoning about access control;
statically-checked declassification.

This list of mechanisms suggests that one reason why static
flow checking has not been widely accepted as a security tech-
nique, despite having been invented over two decades ago, is
that programming language techniques and type theory were
not then sophisticated enough to support a sound, practical
programming model. By adapting these techniques, JFlow
makes a useful step towards usable static flow checking.

I would like to thank several people who read this paper and
gave useful suggestions, including Sameer Ajmani, Ulana
Legedza, and the reviewers. Kavita Bala, Miguel Castro,
and Stephen Garland were particularly helpful in reviewing
the static checking rules. I would also like to thank Nick
Mathewson for his work on the PolyJ compiler, from which
I was able to steal much code, and Barbara Liskov for her
support on this project.

JFlow contains several extensions to the standard Java gram-
mar, in order to allow information flow annotations to be
added. The following productions must be added to or modi-
fied from the standard Java Language Specification [GJS96].
As with the Java grammar, some modifications to this gram-
mar are required if the grammar is to be input to a parser
generator. These grammar modifications (and, in fact, the
code of the JFlow compiler itself) were to a considerable

14

extent derived from those of PolyJ, an extension to Java that
supports parametric polymorphism [MBL97, LMM98].

LabelExpr:
Componentsopt

Components:
Component
Components Component

Component:
Principal Principalsopt

Identifier
Identifier

Principals:
Principal
Principals Principal

Principal: Name

Types are extended to permit labels. The new primitive types
and are also added.

LabeledType:
PrimitiveType LabelExpropt

ArrayType LabelExpropt

Name LabelExpropt

TypeOrIndex LabelExpropt

PrimitiveType:
NumericType

The TypeOrIndex production represents either an instantia-
tion or an array index expression. Since both use brackets,
the ambiguity is resolved after parsing.

TypeOrIndex:
Name ParamOrExprList

ArrayIndex:
TypeOrIndex
PrimaryNoNewArray Expression

ClassOrInterfaceType:
Name
TypeOrIndex

ParamOrExprList:
ParamOrExpr
ParamOrExprList ParamOrExpr

ParamOrExpr:
Expression
LabelExpr

ArrayType:
LabeledType

ArrayCreationExpression:
LabeledType DimExprs OptDims

ClassDeclaration:
Modifiersopt Identifier Paramsopt

Superopt Interfacesopt Authorityopt ClassBody

InterfaceDeclaration:
Modifiersopt Identifier Paramsopt

ExtendsInterfacesopt

Interfacesopt InterfaceBody

Params:
ParameterList

ParameterList:
Parameter
ParameterList Parameter

Parameter:
Identifier

Identifier
Identifier

Authority:
Principals

MethodHeader:
Modifiersopt LabeledType Identifier

BeginLabelopt FormalParameterListopt EndLabelopt

Throwsopt WhereConstraintsopt

Modifiersopt Identifier
BeginLabelopt FormalParameterListopt EndLabelopt

Throwsopt WhereConstraintsopt

ConstructorDeclaration:
Modifiersopt Identifier

BeginLabelopt FormalParameterList EndLabelopt

Throwsopt WhereConstraintsopt

FormalParameter:
LabeledType Identifier OptDims

BeginLabel:
LabelExpr

EndLabel:
LabelExpr

WhereConstraints:
Constraints

Constraints:
Constraint
Constraints Constraint

Constraint:

15

Authority
Principals

Principal Principal

To avoid ambiguity, the classes in a list must be
placed in parentheses. Otherwise a label might be confused
with the method body.

Throws:
ThrowList

Statement:
StatementWithoutTrailingSubstatement

existing productions
ForStatement
SwitchLabelStatement
ActsForStatement
DeclassifyStatement

SwitchLabelStatement:
Expression LabelCases

LabelCases:
LabelCase
LabelCases LabelCase

LabelCase:
Type LabelExpr Identifier OptBlockStatements

LabelExpr OptBlockStatements
OptBlockStatements

ActsForStatement:
Principal Principal Statement

The statement executes a statement, but with
some restrictions removed from .

DeclassifyStatement:
LabelExpr Statement

Literal:
existing productions

LabelExpr

DeclassifyExpression:
Expression LabelExpr

[Aba97] Martı́n Abadi. Secrecy by typing in security pro-
tocols. In Proc. Theoretical Aspects of Com-
puter Software: Third International Conference,
September 1997.

[ACPP91] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce,
and Gordon D. Plotkin. Dynamic typing in a stat-
ically typed language. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS),
13(2):237–268, April 1991. Also appeared as
SRC Research Report 47.

[AR80] Gregory R. Andrews and Richard P. Reitman. An
axiomatic approach to information flow in pro-
grams. ACM Transactions on Programming Lan-
guages and Systems, 2(1):56–76, 1980.

[BL75] D. E. Bell and L. J. LaPadula. Secure com-
puter system: Unified exposition and Multics in-
terpretation. Technical Report ESD-TR-75-306,
MITRE Corp. MTR-2997, Bedford, MA, 1975.
Available as NTIS AD-A023 588.

[Car91] Luca Cardelli. Typeful programming. In E. J.
Neuhold and M. Paul, editors, Formal Descrip-
tion of Programming Concepts. Springer-Verlag,
1991. An earlier version appeared as DEC
Systems Research Center Research Report #45,
February 1989.

[DD77] Dorothy E. Denning and Peter J. Denning. Certi-
fication of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, 1977.

[Den76] Dorothy E. Denning. A lattice model of secure
information flow. Comm. of the ACM, 19(5):236–
243, 1976.

[Den82] Dorothy E. Denning. Cryptography and Data
Security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The
Java Language Specification. Addison-Wesley,
August 1996. ISBN 0-201-63451-1.

[HDT87] Susan Horwitz, Alan Demers, and Tim Teitel-
baum. An efficient general iterative algorithm for
dataflow analysis. Acta Informatica, 24:679–694,
1987.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam cal-
culus: Programming with secrecy and integrity.
In Proc. 25th ACM Symp. on Principles of Pro-
gramming Languages (POPL), San Diego, Cali-
fornia, January 1998.

[JL78] Anita K. Jones and Barbara Liskov. A language
extension for expressing constraints on data ac-
cess. Comm. of the ACM, 21(5):358–367, May
1978.

[KW94] Atsushi Kanamori and Daniel Weise. Work-
list management strategies for dataflow analy-
sis. Technical Report MSR–TR–94–12, Mi-
crosoft Research, May 1994.

16

[Lam73] Butler W. Lampson. A note on the confinement
problem. Comm. of the ACM, 16(10):613–615,
October 1973.

[LMM98] Barbara Liskov, Nicholas Mathewson, and
Andrew C. Myers. PolyJ: Parameterized
types for Java. Software release. Located at
http://www.pmg.lcs.mit.edu/polyj, July 1998.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Bar-
bara Liskov. Parameterized types for Java. In
Proc. 24th ACM Symp. on Principles of Program-
ming Languages (POPL), pages 132–145, Paris,
France, January 1997.

[ML97] Andrew C. Myers and Barbara Liskov. A de-
centralized model for information flow control.
In Proc. 17th ACM Symp. on Operating System
Principles (SOSP), pages 129–142, Saint-Malo,
France, 1997.

[ML98] Andrew C. Myers and Barbara Liskov. Complete,
safe information flow with decentralized labels.
In Proc. IEEE Symposium on Security and Pri-
vacy, Oakland, CA, USA, May 1998.

[MMN90] Catherine J. McCollum, Judith R. Messing, and
LouAnna Notargiacomo. Beyond the pale of
MAC and DAC — defining new forms of access
control. In Proc. IEEE Symposium on Security
and Privacy, pages 190–200, 1990.

[Mye99] Andrew C. Myers. Mostly-Static Decentralized
Information Flow Control. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge,
MA, 1999. In progress.

[PO95] Jens Palsberg and Peter Ørbæk. Trust in the -
calculus. In Proc. 2nd International Symposium
on Static Analysis, number 983 in Lecture Notes
in Computer Science, pages 314–329. Springer,
September 1995.

[RM96] Jakob Rehof and Torben Æ. Mogensen. Trac-
table constraints in finite semilattices. In Proc.
3rd International Symposium on Static Analysis,
number 1145 in Lecture Notes in Computer Sci-
ence, pages 285–300. Springer-Verlag, Septem-
ber 1996.

[RSC92] Joel Richardson, Peter Schwarz, and Luis-Felipe
Cabrera. CACL: Efficient fine-grained protection
for objects. In Proceedings of the 1992 ACM Con-
ference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 154–
165, Vancouver, BC, Canada, October 1992.

[Sto81] Allen Stoughton. Access flow: A protection
model which integrates access control and infor-
mation flow. In IEEE Symposium on Security
and Privacy, pages 9–18. IEEE Computer Soci-
ety Press, 1981.

[SV98] Geoffrey Smith and Dennis Volpano. Secure in-
formation flow in a multi-threaded imperative lan-
guage. In Proc. 25th ACM Symp. on Principles
of Programming Languages (POPL), San Diego,
California, January 1998.

[Vol97] Dennis Volpano. Provably-secure programming
languages for remote evaluation. ACM SIGPLAN
Notices, 32(1):117–119, January 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia
Irvine. A sound type system for secure flow analy-
sis. Journal of Computer Security, 4(3):167–187,
1996.

17

