
High Availability in DHTs: Erasure Coding vs. Replication

Rodrigo Rodrigues and Barbara Liskov
MIT

Abstract

High availability in peer-to-peer DHTs requires data redun-
dancy. This paper compares two popular redundancy schemes:
replication and erasure coding. Unlike previous comparisons,
we take the characteristics of the nodes that comprise the over-
lay into account, and conclude that in some cases the benefits
from coding are limited, and may not be worth its disadvan-
tages.

1 Introduction

Peer-to-peer distributed hash tables (DHTs) propose a logi-
cally centralized, physically distributed, hash table abstrac-
tion that can be shared simultaneously by many applica-
tions [7, 9, 12, 15]. Ensuring that data objects in the DHT
have high availability levels when the nodes that are storing
them are not themselves 100% available requires some form of
data redundancy. Peer-to-peer DHTs have proposed two dif-
ferent redundancy schemes: replication [12, 15] and erasure
coding [7, 9]. This paper aims to provide a comprehensive dis-
cussion about the advantages of each scheme.

While previous comparisons exist [4, 7, 17] they mostly ar-
gue that erasure coding is the clear victor, due to huge storage
savings for the same availability levels (or conversely, huge
availability gains for the same storage levels). Our conclusion
is somewhat different: we argue that while gains from cod-
ing exist, they are highly dependent on the characteristics of
the nodes that comprise the overlay. In fact, the benefits of
coding are so limited in some cases that they can easily be out-
weighed by some disadvantages and the extra complexity of
erasure codes.

We begin this paper by performing an analytic compari-
son of replication and coding that clearly delineates the rela-
tive gains from using coding vs. replication as a function of
the server availability and the desired DHT object availability
(Section 2). We present a model [5] that allows us to under-
stand server availability (Section 3). Then we use measured
values from three different traces to find out exact values for
the parameters of the model (Section 4). This allows us to
draw more precise conclusions about the advantages of using
coding or replication (Section 5).

2 Coding vs. Replication – Redundancy Levels

This section summarizes the two redundancy schemes and
presents an analytic comparison that highlights the main ad-
vantage of coding: the savings in terms of the required redun-
dancy. Section 5 outlines other positive and negative aspects
of the two schemes.

2.1 Replication
Replication is the simplest redundancy scheme; here k identi-
cal copies of each data object are kept at each instant by system
members.

The value of k must be set appropriately depending on the
desired per object unavailability target, ε (i.e., 1 − ε has some
“number of nines”), and on the average node availability, a.
Assuming that node availability is independent and identically
distributed (I.I.D.), and assuming we only need one out of the
k replicas of the data to be available in order to retrieve it (this
would be the case if the data is immutable and therefore a sin-
gle available copy is sufficient to retrieve the correct object),
we compute the following values for ε.

ε = P (object o is unavailable)

= P (all k replicas of o are unavailable)

= P (one replica is unavailable)k

= (1 − a)k

which upon solving for k yields

k =
log ε

log(1 − a)
(1)

2.2 Erasure Coding
With an erasure-coded redundancy scheme, each object is di-
vided into m fragments and recoded into n fragments which
are stored separately, where n > m. This means that the effec-
tive redundancy factor is kc = n

m
. The key property of erasure

codes is that the original object can be reconstructed from any
m fragments (where the combined size for the m fragments is
approximately equal to the original object size).

We now exhibit the equivalent of Equation (1) for the case
of erasure coding. (This is a summary of a complete derivation
that can be found in [3].) Object availability is given by the
probability that at least m out of kc ·m fragments are available:

1 − ε =

kcm
∑

i=m

(

kcm

i

)

ai(1 − a)kcm−i.

Using algebraic simplifications and the normal approxima-
tion to the binomial distribution (see [3]), we get the following
formula for the erasure coding redundancy factor:

kc =





σε

√

a(1−a)
m

+

√

σ2
ε
a(1−a)
m

+ 4a

2a





2

(2)

where σε is the number of standard deviations in a normal dis-
tribution for the required level of availability. E.g., σε = 3.7
corresponds to four nines of availability.



1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
p
l
i
c
a
t
i
o
n
/
S
t
r
e
t
c
h
 
R
a
t
i
o

Server Availability

3 9s
4 9s
5 9s

Figure 1: Ratio between required replication and required expansion factors as
a function of the server availability and for three different per-object availabil-
ity levels. We used m = 7 in equation 2, since this is the value used in the
Chord implementation [7].

Note that we considered the use of deterministic cod-
ing schemes with a constant rate of encoding (e.g., Reed-
Solomon [13] or IDA [11]). Our analysis does not extend to
rateless codes [10], since it is not consensual how to use such
codes in a storage environment like a DHT.

2.3 Comparing the Redundancy
The previous discussion highlights the main reason for using
coding: the increased redundancy allows the same level of
availability to be achieved with much smaller additional stor-
age.

The exact gains are depicted in Figure 1. This plots the ra-
tio between the required replication and the required erasure
coding expansion factor (i.e., the ratio between equations 1
and 2) for different server availability levels (assuming server
availability is I.I.D.) and for three different per-object avail-
ability targets: 3, 4, and 5 nines of availability. In this figure
we set the number of fragments needed to reconstruct an object
to be 7 (i.e., we set m = 7 in Equation 2). This is the value
used by Chord [7].

The conclusion is that erasure coding is going to matter
more if you store the data in unreliable servers (lower server
availability levels) or if you target better guarantees from the
system (higher number of nines in object availability). The
redundancy gains from using coding range from 1 to 3-fold.

The remainder of our discussion assumes a per-object
availability target of 4 nines. Targeting higher levels of avail-
ability seems exaggerated since other aspects of the system will
not keep up with such high availability levels. For instance, a
measurement study of MIT’s client access link found that a
host at MIT was able to reach the rest of the Internet 99.9% of
the time [1]. The same study pointed out that the MIT access
link was more reliable than two other links (a DSL line and a
100 Mbits/s link from Cogent). If the client access link only
has 3 nines of availability, then making a distinction between,
for instance, 5 and 6 nines of of DHT object availability is ir-
relevant since the end-to-end object availability is dominated

by the uplink quality (or other factors we are not considering),
and the extra DHT availability is in the noise.

A question we may ask is why are redundancy savings im-
portant? Obviously, they lead to lower disk usage. Also they
may improve the speed of writes, since a smaller amount of
data has to be uploaded from the writer to the servers, and
therefore, if client upload bandwidth limits the write speed,
then coding will lead to faster writes.

But more important than these two aspects is the savings
in the bandwidth required to restore redundancy levels in the
presence of changing membership. This importance is due to
the fact that bandwidth, and not spare storage, is most likely
the limiting factor for the scalability of peer-to-peer storage
systems [5].

3 Basic Model
This section presents a simple model that allows us to (1) quan-
tify the bandwidth cost for maintaining data redundancy in the
presence of membership changes (as a function of the required
redundancy), and (2) understand the concept of server avail-
ability in a peer-to-peer DHT so we can measure it. The core
of the model, described in Sections 3.1 and 3.2, was presented
in a previous publication [5], so we will only summarize it.

3.1 Assumptions
Our model assumes a large, dynamic collection of nodes that
cooperatively store data. The data set is partitioned and each
subset is assigned to different nodes using a well-known data
placement mapping (i.e., a function from the current member-
ship to the set of replicas of each block). This is what happens,
for instance, in consistent hashing [8], used by storage systems
such as CFS [7].

We make a number of simplifying assumptions. The main
simplification comes from the fact that we will only focus on
an average-case analysis. When considering the worse-case
values for certain parameters, like the rate at which nodes leave
the system, the model underestimates the required bandwidth.

We assume a fixed redundancy factor and identical per-
node space contributions. A previous system [4] dropped these
two assumptions and used a variable redundancy factor where
many copies are created initially, and, as flaky nodes leave the
system, the redundancy levels will drop. This leads to a bi-
ased system where the stable nodes donate most of the stor-
age, therefore drastically reducing bandwidth costs. This af-
fects some of our conclusions, and, as future work, we would
like to understand how our analysis would change in this new
design.

We assume a constant rate of joining and leaving and we
assume that join and leave events are independent. We also
assume a constant steady-state number of nodes.

3.2 Data Maintenance Model
We consider a set of N identical hosts that cooperatively pro-
vide guaranteed storage over the network. Nodes are added to
the set at rate α and leave at rate λ, but the average system size



Session
Time

Lifetime
Membership

time

Figure 2: Distinction between sessions and lifetimes.

is constant, i.e. α = λ. On average, a node stays a member
for T = N/λ (this is a queuing theory result known as Little’s
Law [2]).

Our data model is that the system reliably stores a total
of D bytes of unique data stored with a redundancy factor k,
for a total of S = kD bytes of contributed storage. k is ei-
ther the replication factor or the expansion due to coding and
must be set (depending on a desired availability target and on
the node availability of the specific deployment) according to
equations 1 and 2.

Each node joining the system must download all the data
that it must serve later, however that subset of data might be
mapped to it. The average size of this transfer is S/N , since we
assume identical per-node storage contributions. Join events
happen every 1

α
= 1

λ
time units on average. So the aggre-

gate bandwidth to deal with nodes joining the overlay is λS

N
, or

S/T .
When a node leaves the overlay, all the data it housed must

be copied over to new nodes; otherwise redundancy would be
lost. Thus, each leave event also leads to the transfer of S/N
bytes of data. Leaves therefore also require an aggregate band-
width of λS

N
, or S/T .

In some cases the cost of leaving the system can be
avoided: for instance, if the level of redundancy for a given
block is sufficiently high, a new node can both join and leave
without requiring data movement.

We will ignore this optimization and therefore the total
bandwidth usage for data maintenance is 2S

T
= 2kD

T
, or a per

node average of:

B/N = 2
kD/N

T
, or BW/node = 2

space/node

lifetime
(3)

3.3 Restoring Redundancy with Coding
When coding is used, creating new fragments to cope with
nodes holding other fragments leaving the system is not a
trivial task. The problem is that with coding schemes like
IDA [11], to create a new fragment we must have access
to the entire data object. We envision two alternative ap-
proaches. The more complicated alternative would be to down-
load enough fragments to reconstruct the object and then create
a new fragment. This is very costly since, for each fragment
that is lost and needs to be reinstated, some system node needs
to download m times the size of the fragment. Thus the amount
of data that needs to be transferred is m times higher than the
amount of redundancy lost.

The alternative is to maintain a full copy of the object at one
of the nodes, along with the fragments at the remaining nodes
that share the responsibility for the object. In practice, this

Membership
Interval

Membership
Interval

time

Join Join LeaveLeave

Figure 3: Membership timeout, τ .

corresponds to increasing the redundancy factors for erasure
coding by one unit.

Note that the analysis above is still correct when we mix
fragments with complete copies, namely the fact that the
amount of data that needs to be moved when nodes leave is
equal to the amount of data the departing node stored. This
is correct because to restore a fragment, the node that keeps a
complete copy can create the new fragment and push it to the
new owner, and to restore a complete copy the node that will
become responsible for that copy can download m fragments
with the combined size approximately equal to the size of the
object.

In the remainder of the paper we will assume that a sys-
tem using coding keeps the additional complete copy for each
object stored in the system.

3.4 Distinguishing Downtime vs. Departure
In the model we presented, we refer to joins and leaves as join-
ing the system for the first time or leaving forever, and data
movement is triggered only by these events.

In other words, we try to make a simple distinction between
session times and membership lifetimes (as other authors have
noted [3, 14]). This distinction is illustrated in Figure 2: A
session time corresponds to the duration of an interval when a
node is reachable, whereas a membership lifetime is the time
from when the node enters the system for the first time until it
leaves the system permanently.

This distinction is important since it avoids triggering data
movement to restore redundancy due to a temporary discon-
nection. The side effect of doing this is that nodes will be un-
available for some part of their membership lifetime. We define
node availability, a, as the fraction of the time a member of the
system is reachable, or in other words, the sum of the node’s
session times divided by the node’s membership lifetime.

3.5 Detecting Permanent Departures
The problem with this simple model for distinguishing be-
tween sessions and membership lifetimes is that it requires fu-
ture knowledge: applications have no means to distinguish a
temporary departure from a permanent leave at the time of a
node’s disconnection. To address this problem we introduce a
new concept, a membership timeout, τ , that measures how long
the system delays its response to failures. In other words, the
process of making new hosts responsible for a host’s data does
not begin until that host has been out of contact for longer than
time τ , as illustrated in Figure 3.

There are two main consequences of increasing the mem-
bership timeout: First, a higher τ means that member lifetimes



0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80A
v
g
 
L
e
a
v
e
 
R
a
t
e
 
(
f
r
a
c
t
i
o
n
 
o
f
 
N
/
h
r
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 4: Membership dynamics as a function of the membership timeout (τ ).

are longer since transient failures are not considered leaves
(and as a consequence the total member count will also in-
crease). Second, the average host availability, a, will decrease
if we wait longer before we evict a node from the system.

Translating this into our previous model, T and N will now
become T (τ) and N(τ), and a will now become a(τ), which
implies that k will become k(a(τ), ε) (set accordingly to the
equations above). Note that a decreases with τ , whereas T , N ,
and k increase with τ . By our definition of availability, N(τ)
can be deduced as N(0)/a(τ).

Another consequence is that some joins are not going to
trigger data movement, as they will now be re-joins and the
node will retain the data it needs to serve after re-joining the
system. According to the measurements we will present later,
this has a minor impact on data movement when we set long
membership timeouts (i.e., if τ is large enough then there will
hardly exist any re-joins) so we will ignore this issue.

Equation 3 can therefore be rewritten as

B/N(τ) = 2
k(a(τ), ε)D/N(τ)

T (τ)
(4)

Note that B/N(τ) is the average bandwidth used by sys-
tem members. At any point in time some of these members are
not running the application (the unavailable nodes) and these
do not contribute to bandwidth usage. Thus we also may want
to compute the average bandwidth used by nodes while they
are available (i.e., running the application). To do this we re-
place the left hand side of Equation 4 with a(τ)B/N(0) and
compute B/N(0) instead.

4 Measured Dynamics and Availability
In this section we present results from measurements of how
the membership dynamics and the node availability change as
a function of the membership timeout (τ ), and derive the cor-
responding redundancy requirements and maintenance band-
width (for both replication and coding).

We use numbers from three different traces that correspond
to distinct likely deployments of a peer-to-peer storage system:

• Peer-to-peer (volunteer-based) – We used the data col-
lected by Bhagwan et al. on their study of the Overnet

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

A
v
e
r
a
g
e
 
A
v
a
i
l
a
b
i
l
i
t
y

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 5: Average node availability as a function of the membership timeout
(τ ).

file sharing system [3]. This tracked the reachability of
2,400 peers (gathered using a crawl of the system mem-
bership) during 7 days by looking up their node IDs every
20 minutes.

• Corporate Desktop PCs – We used the data collected by
Bolosky et al. [6] on their study of the availability of
51,663 desktop PCs at Microsoft Corporation over the
course of 35 days by pinging a fixed set of machines every
hour.

• Server Infrastructure – This data was collected by Stri-
bling [16] and reflects the results of pinging every pair
among 186 hosts of the Planet Lab testbed every 15 min-
utes. We used the data collected over the course of 70
days between October and December 2003. Here we con-
sidered a host to be reachable if at least half of the nodes
in the trace could ping it.

Our analysis only looks at the average case behavior of the
system.

Figure 4 shows how increasing the membership timeout τ
decreases the dynamics of the system. In this case, the dynam-
ics are expressed as the average fraction of system nodes that
leave the system during an hour (in the y axis). Note that by
leave we are now referring to having left for over τ units of
time (i.e., we are referring to membership dynamics, not ses-
sion dynamics).

As expected, the system membership becomes less dy-
namic as the membership timeout increases, since some of the
session terminations will no longer be considered as member-
ship leaves, namely if the node returns to the system before τ
units of time.

As mentioned, the second main effect of increasing τ is that
the node availability in the system will decrease. This effect is
shown in Figure 5.

Node availability is, as one would expect, extremely high
for PlanetLab (above 97% on average), slightly lower for Far-
site (but still above 85% on average), and low for the peer-to-
peer trace (lower than 50% when τ is greater than 11 hours).

Note that we did not plot how N varies with τ but this can
be easily deduced from the fact that N(τ) = N(0)/a(τ).



0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

R
e
q
u
i
r
e
d
 
R
e
p
l
i
c
a
t
i
o
n
 
F
a
c
t
o
r

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 6: Required replication factor for four nines of per-object availability,
as a function of the membership timeout (τ ).

4.1 Needed Redundancy and Bandwidth

Finally, we measure the bandwidth gains of using erasure cod-
ing vs. replication in the three deployments.

First, we compute the needed redundancy for the two re-
dundancy schemes as a function of the membership timeout
(τ ). To do this we used the availability values of Figure 5 in
Equations (1) and (2), and plotted the corresponding redun-
dancy factors, assuming a target average per-object availability
of four nines.

The results for replication are shown in Figure 6. This
shows that Overnet requires the most redundancy, as expected,
reaching a replication factor of 20. In the other two deploy-
ments replication factors are much lower, on the order of a
few units. Note that the replication values in this figure are
rounded off to the next integer, since we cannot have a fraction
of copies.

Figure 7 shows the redundancy requirements (i.e., the ex-
pansion factor) for the availability values of Figure 5 (using
Equation 2 with m = 7 and four nines of target availability).
The redundancy values shown in Figure 7 include the extra
copy of the object required to create new fragments as nodes
leave the system (as we explained in Section 3.3).

As shown in Figure 7, Overnet still requires more redun-
dancy than the other two deployments, but for Overnet cod-
ing leads to the most substantial storage savings (for a fixed
amount of unique data stored in the system) since it can reduce
the redundancy factors by more than half.

Finally, we compare the bandwidth usage of the two
schemes. For this we use the basic equation for the cost of
redundancy maintenance (Equation 3) and apply for member-
ship lifetimes the values implied by the leave rates from Fig-
ure 4 (recall the average membership lifetime is the inverse of
the average join or leave rate). We will also assume a fixed
number of servers (10, 000), and a fixed amount of unique data
stored in the system (10TB). We used the replication factors
from Figure 6, and for coding the redundancy factors from Fig-
ure 7.

Figure 8 shows the average bandwidth used for the three
different traces and for different values of τ . An interesting
effect can be observed in the Farsite trace, where the band-

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80

R
e
q
u
i
r
e
d
 
R
e
d
u
n
d
a
n
c
y
 
(
S
t
r
e
t
c
h
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 7: Required coding redundancy factor for four nines of per-object avail-
ability, as a function of the membership timeout (τ ) as determined by Equa-
tion 2, and considering the extra copy required to restore lost fragments.

width has two “steps” (around τ = 14 and τ = 64 hours).
These correspond to the people who turn off their machines at
night, and during the weekends, respectively. Setting τ to be
greater than each of these downtime periods will prevent this
downtime from generating a membership change and the cor-
responding data movement.

Figure 9 shows the equivalent of Figure 8 for the case
when coding is used instead of replication. The average band-
width values are now lower due to the smaller redundancy used
with coding, especially in the Overnet deployment where we
achieve the most substantial redundancy savings.

5 Discussion and Conclusion
Several conclusions can be drawn from Figures 8 and 9.

For the Overnet trace, coding is a win since server avail-
ability is low (we are on the left hand side of Figure 1) but
unfortunately the maintenance bandwidth for a scalable and
highly available storage system with Overnet-like membership
dynamics can be unsustainable for home users (around 100
kbps on average for a modest per-node contribution of a few
gigabytes). Therefore, cooperative storage systems should tar-
get more stable environments like Farsite or PlanetLab.

For the PlanetLab trace, coding is not a win, since server
availability is extremely high (corresponding to the right hand
side of Figure 1).

So the most interesting deployment for using erasure codes
is Farsite, where intermediate server availability of 80–90%
already presents visible redundancy savings.

However, the redundancy savings from using coding in-
stead of full replication come at a price.

The main point against the use of coding is that it intro-
duces complexity in the system. Not only there is complexity
associated with the encoding and decoding of the blocks, but
the entire system design becomes more complex (e.g., the task
of redundancy maintenance becomes more complicated as ex-
plained in Section 3).

As a general principle, we believe that complexity in sys-
tem design should be avoided unless proven strictly necessary.
Therefore system designers should question if the added com-



1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

M
a
i
n
t
e
n
a
n
c
e
 
B
W
 
(
k
b
p
s
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 8: Maintenance bandwidth – Replication. Average bandwidth re-
quired for redundancy maintenance as a function of the membership time-
out (τ ). This assumes that 10, 000 nodes are cooperatively storing 10TB

of unique data, and replication is used for data redundancy.

plexity is worth the benefits that may be limited depending on
the deployment.

Another point against the use of erasure codes is the down-
load latency in a environment like the Internet where the inter-
node latency is very heterogeneous. When using replication,
the data object can be downloaded from the replica that is clos-
est to the client, whereas with coding the download latency is
bounded by the distance to the mth closest replica. This prob-
lem was illustrated with simulation results in a previous pa-
per [7].

The task of downloading only a particular subset of the ob-
ject (a sub-block) is also complicated by coding, where the en-
tire object must be reconstructed. With full replicas sub-blocks
can be downloaded trivially.

A similar observation is that erasure coding is not adequate
for a system design where operations are done at the server
side, like keyword searching.

A final point is that in our analysis we considered only im-
mutable data. This assumption is particularly important for our
distinction between session times and membership lifetimes,
because we are assuming that when an unreachable node re-
joins the system, its state is still valid. This would not be
true if it contained mutable state that had been modified in
the meantime. The impact of mutability on the redundancy
choices is unclear, since we have to consider how a node deter-
mines whether its state is accurate, and what it does if it isn’t.
A study of redundancy techniques in the presence of mutability
is an area for future work.

Acknowledgements
We thank Jeremy Stribling, the Farsite team at MSR, and the
Total Recall team at UCSD for supplying the data collected
in their studies. We thank Mike Walfish, Emil Sit, and the
anonymous reviewers for their helpful comments.

References
[1] D. Andersen. Improving End-to-End Availability Using Overlay

Networks. PhD thesis, MIT, 2005.

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

M
a
i
n
t
e
n
a
n
c
e
 
B
W
 
(
k
b
p
s
)

Membership Timeout (hours)

Overnet
Farsite

PlanetLab

Figure 9: Maintenance bandwidth – Erasure coding. Average bandwidth
required for redundancy maintenance as a function of the membership time-
out (τ ). This assumes that 10, 000 nodes are cooperatively storing 10TB of
unique data, and coding is used for data redundancy.

[2] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall,
1987.

[3] R. Bhagwan, S. Savage, and G. Voelker. Understanding avail-
ability. In Proc. IPTPS ’03.

[4] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
recall: System support for automated availability management.
In Proc. NSDI ’04.

[5] C. Blake and R. Rodrigues. High availability, scalable storage,
dynamic peer networks: Pick two. In Proc. 9th HotOS, 2003.

[6] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of
a serverless distributed file system deployed on an existing set
of desktop PCs. In Proc. SIGMETRICS 2000.

[7] F. Dabek, J. Li, E. Sit, J. Robertson, F. Kaashoek, and R. Morris.
Designing a DHT for low latency and high throughput. In Proc.
NSDI ’04.

[8] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In Proc. STC’97.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proc. ASPLOS 2000.

[10] M. Luby. LT codes. In Proceedings of the 43rd Symposium
on Foundations of Computer Science (FOCS 2002), Vancouver,
Canada, Nov. 2002.

[11] M. Rabin. Efficient dispersal of information for security, load
balancing, and fault tolerance. J. ACM, 36(2), 1989.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proc. SIGCOMM
’01.

[13] S. Reed and G. Solomon. Polynomial codes over certain finite
fields. J. SIAM, 8(2):300–304, June 1960.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proc. USENIX’04.

[15] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. SOSP’01.

[16] J. Stribling. Planetlab - all pairs pings. http://pdos.lcs.mit.edu/
˜strib/pl app.

[17] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. repli-
cation: A quantitative comparison. In Proc. IPTPS ’02.


