
Tolerating Byzantine Faulty Clients in a Quorum System

Barbara Liskov
MIT CSAIL

Cambridge, MA, USA

Rodrigo Rodrigues
INESC-ID / Instituto Superior Técnico

Lisbon, Portugal

Abstract

Byzantine quorum systems have been proposed that work
properly even when up to f replicas fail arbitrarily. How-
ever, these systems are not so successful when confronted
with Byzantine faulty clients. This paper presents novel
protocols that provide atomic semantics despite Byzantine
clients. Our protocols prevent Byzantine clients from inter-
fering with good clients: bad clients cannot prevent good
clients from completing reads and writes, and they cannot
cause good clients to see inconsistencies. In addition we
also prevent bad clients that have been removed from oper-
ation from leaving behind more than a bounded number of
writes that could be done on their behalf by a colluder.

Our protocols are designed to work in an asynchronous
system like the Internet and they are highly efficient. We
require 3f +1 replicas, and either two or three phases to do
writes; reads normally complete in one phase and require
no more than two phases, no matter what the bad clients are
doing.

We also present strong correctness conditions for sys-
tems with Byzantine clients that limit what can be done on
behalf of bad clients once they leave the system. Further-
more we prove that our protocols are both safe (they meet
those conditions) and live.

1 Introduction

Quorum systems [4, 13] are valuable tools for building
highly available replicated data services. A quorum system
can be defined as a set of sets (called quorums) with certain
intersection properties. These systems allow read and write
operations to be performed only at a quorum of the servers,
since the intersection properties ensure that any read op-
eration will have access to the most recent value that was
written.

The original work on quorum systems assumed that
servers fail benignly, i.e., by crashing or omitting some
steps. More recently, researchers have developed tech-
niques that enable quorum systems to provide data avail-
ability even in the presence of arbitrary (Byzantine)

faults [9]. Earlier work provides correct semantics despite
server (i.e., replica) failures and also handles some of the
problems of Byzantine clients [2, 3, 5, 9, 10, 11, 12].

This paper extends this earlier work in two important
ways. First, it defines new protocols that efficiently han-
dle more problems caused by Byzantine clients than pre-
vious approaches. Our protocols compare favorably to all
previous proposals: they either rely on weaker assumptions
(e.g., about the network), or they are more efficient in terms
of operation latency and number of replicas.

Second, the paper formally defines novel correctness
conditions for Byzantine quorum systems, and proves that
our protocols meet such conditions. The correctness condi-
tions are stronger than what has been stated previously [11]
and what has been guaranteed by previous approaches.

Since a dishonest client can write garbage into the shared
variable, it may seem there is little value in limiting what
bad clients can do. But this is not the case, for two reasons.
First, bad clients can cause a protocol to misbehave so that
good clients are unable to perform operations (i.e., the pro-
tocol is no longer live) or observe incorrect behavior. For
example, if the variable is write-once, a good client might
observe that its state changes multiple times.

Second, bad clients can continue to interfere with good
ones even after they have been removed from operation,
e.g., by a system administrator who learns of the misbe-
havior. We would like to limit such interference so that,
after only a limited number of writes by good clients, any
lurking writes left behind by a bad client will no longer be
visible to good clients. A lurking write is a modification
launched by the bad client before it was removed from op-
eration that will become visible (possibly with help from an
accomplice) after it has left the system. By limiting such
writes we can ensure that the object becomes useful again
after the departure of the bad client, e.g., some invariant that
good clients preserve will hold.

Of course, it is not possible to prevent actions by a bad
client, even if it has been shut down, if the private key it
uses to prove that it is authorized to modify an object can
be used by other nodes; thus, we consider a bad client to be
in the system as long as any node knows its private key. (In
practice this problem might be handled by an administrator

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

removing the bad client from the access control list.)

Thus, we make the following contributions:

• We present strong correctness conditions for an atomic
read/write object in a system in which both clients and
replicas can be Byzantine. Our conditions improve on
existing correctness conditions [6, 11] by ensuring atom-
icity for good clients, and also imposing strict limits on
the effects of bad clients that have been removed from
operation: our conditions bound the number of lurking
writes by a constant factor, and prevent lurking writes
after bad clients stop and good clients subsequently over-
write the data.

• We present the first Byzantine quorum protocols that sat-
isfy the conditions using only 3f + 1 replicas (to sur-
vive f faulty replicas) and work in an unreliable asyn-
chronous network like the Internet. Furthermore our pro-
tocols are efficient: To do writes requires either 3 phases
(our base protocol) or mostly 2 phases (our optimized
protocol). Reads usually require 1 phase; they some-
times need an additional phase (to write back the data
just read). Our base protocol ensures that there can be
at most one lurking write after a bad client has left the
system; the optimized protocol ensures slightly weaker
behavior: there can be a most two lurking writes.

• We are able to manage with a small number of replicas
and phases because our protocol makes use of “certifi-
cates”, an approach that we believe can be used to ad-
vantage in other protocols. A certificate is a collection
of 2f +1 authenticated messages from different replicas
that vouch for some fact, e.g., that a client has completed
its previous write, or that the state read from a single
replica is valid.

• We prove the correctness of our protocols, both safety
and liveness. In addition we describe a variation of our
protocols that supports a still stronger correctness con-
dition, in which we can bound the number of writes of
good clients that it takes to ensure that modifications of
the bad client that has left the system will no longer be
visible. This variation sometimes requires an additional
phase to do a write.

The rest of this paper is organized as follows. We begin
by describing our assumptions about the system. Section 3
describes our base protocol. Section 4 describes our correct-
ness conditions and we prove our base protocol meets them
in Section 5. Section 6 describes our optimized protocol and
proves its correctness. Section 7 describes a variation of our
protocols that allows us to bound the number of overwrites
needed to hide effects of lurking writes. Section 8 discusses
related work and we conclude in Section 9.

2 Model

The system consists of a set C = {c1, ..., cn} of client
processes and a set S = {s1, ..., sn} of server processes.
Client and server processes are classified as either correct or
faulty. Correct processes are constrained to obey their spec-
ification, i.e., they follow the prescribed algorithms. Faulty
processes may deviate arbitrarily from their specification,
i.e., we assume a Byzantine failure model [8]. Note that
faulty processes include those that fail benignly as well as
those suffering from Byzantine failures.

We refer to the set of faulty clients as Cbad and the set
of correct clients as Cok, and consequently we have C =
Cbad ∪ Cok (and respectively S = Sbad ∪ Sok). Note that
our algorithms do not require the knowledge of Cok, Cbad,
Sok, nor Sbad. In other words, we do not assume that we
can detect faults.

We assume an asynchronous distributed system where
nodes are connected by a network that may fail to deliver
messages, delay them, duplicate them, corrupt them, or de-
liver them out of order, and there are no known bounds on
message delays or on the time to execute operations. We
assume the network is fully connected, i.e., given a node
identifier, any other node can (attempt to) contact the first
node directly by sending it a message.

For liveness, we only require that if a client keeps re-
transmitting a request to a correct server, the reply to that
request will eventually be received.

We assume nodes can use unforgeable digital signatures
to authenticate communication. More precisely, any node,
n, can authenticate messages it sends by signing them. We
denote a message m signed by n as 〈m〉σn . And no node
can send 〈m〉σn (either directly or as part of another mes-
sage) on the network for any value of m, unless it is re-
peating a message that has been sent before or it knows n′s
private key. (In some cases we will be able to replace costly
digital signatures with point to point authenticators, as dis-
cussed later, but we will maintain the notation 〈m〉σn .)

We assume the existence of a collision-resistant hash
function, h, such that any node can compute a digest h(m)
of a message m and it is impossible to find two distinct mes-
sages m and m′ such that h(m) = h(m′).

To avoid replay attacks we tag certain messages with
nonces that are signed in the replies. We assume that when
clients pick nonces they will not choose a repeated nonce.

3 BFT-BC Algorithm

This section presents our construction for a read/write
variable implemented using Byzantine quorum replication,
and that tolerates Byzantine-faulty clients. We begin by giv-
ing a brief overview of Byzantine quorums in Section 3.1.
Then we present our base protocol. This protocol requires

2

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

3 phases to write; we discuss its costs in Section 3.3. Sec-
tion 6 presents an optimization that requires only 2 phases
most of the time.

3.1 Byzantine Quorums Overview

This section gives an overview of how current algorithms
use Byzantine quorums to implement a shared read/write
variable. The presentation follows the original BQS proto-
col [9], using their construction for a system that doesn’t
handle Byzantine clients. (We discuss this system further in
Section 8.)

A Byzantine quorum system defines a set of subsets of a
replica group with certain intersection properties. A typical
way to configure such a system is to use groups of 3f + 1
replicas to survive f failures with quorums of size 2f + 1
replicas. This ensures that any two quorums intersect in at
least one non-faulty replica. Each of the replicas maintains
a copy of the data object, along with an associated time-
stamp, and a client signature that authenticates the data and
timestamp.

Two phases are required to write the data. First, the client
contacts a quorum to obtain the highest timestamp produced
so far. The client then picks a timestamp higher than what
was returned in the first phase, signs the new value and
timestamp, and proceeds to the second phase where the new
value is stored at a quorum of replicas.

Replicas allow write requests only from authorized
clients. A replica overwrites what it has stored only if the
timestamp in the request is greater than what it already has.

The read protocol usually has a single phase where the
client queries a quorum of replicas and returns the value
with the highest timestamp (provided the signature is cor-
rect). An extension of this protocol [10] requires a second
phase that writes back the highest value read to a quorum of
replicas (this ensures atomic semantics).

3.2 BFT-BC Protocol

The protocol just presented is not designed to handle
Byzantine-faulty clients, which can cause damage to the
system in several ways, e.g.:

1. Not follow the protocol by writing different values asso-
ciated with the same timestamp.

2. Only carry out the protocol partially, e.g., install a mod-
ification at just one replica.

3. Choose a very large timestamp and exhaust the time-
stamp space.

4. Issue a large number of write requests and hand them off
to a colluder who will run them after the bad client has
been removed from the system. This colluder could be
one of the replicas, or a completely separate machine.

These actions can cause unwanted behavior from Byzan-
tine quorum protocols. In particular, we want to achieve a
protocol where faulty clients cannot prevent good clients
from making progress, but also where, once the bad client
stops, the number of lurking writes seen by that bad client
is bounded by a small constant. (We define these conditions
formally in Section 4.)

Our protocol prevents Byzantine clients from the above
mentioned actions, thereby accomplishing these correctness
conditions. It uses 3f +1 replicas, and quorums can be any
subset with 2f +1 replicas. It uses a three-phase protocol to
write, consisting of a read phase to obtain the most recent
timestamp, a prepare phase in which a client announces its
intention to write a particular timestamp and value, and a
write phase in which the client does the write that it pre-
pared previously.

As it moves from one phase to another, however, the
client needs to “prove” that what it is doing is legitimate. It
does this by using certificates. A certificate takes the form
of a quorum of authenticated messages from different repli-
cas that vouch for some fact.

For example, the purpose of the prepare phase is for the
client to inform the replicas of what it intends to do, and this
must be acceptable, e.g., the timestamp it proposes cannot
be too big. Replicas that approve the prepare request return
messages that together provide a prepare certificate. This
certificate is needed to carry out the write phase: a client can
only carry out a write that has been approved. When a write
is performed by a replica it returns an authenticated message
and these messages together form a write certificate. This
certificate is needed for the replica to do its next write: it
cannot complete the prepare phase for a second write (with
a higher timestamp) without completing its first one. This
constraint, plus the fact that certificates cannot be forged
or predicted in advance by bad clients, is what limits the
number of lurking writes a bad client can leave behind when
it stops (to be carried out by some node that colludes with
it).

We now describe our protocol in detail.
As mentioned, each object in BFT-BC is replicated at a

set of 3f +1 replicas, numbered from 0 to 3f . Quorums can
be any subset with 2f +1 replicas and we use a three-phase
protocol to write.

A valid prepare certificate contains a quorum of state-
ments 〈PREPARE-REPLY, ts, h〉σr where each statement is
authenticated by its replica r and all statements contain the
same timestamp ts and hash h. A valid write certificate con-
tains a quorum of statements 〈WRITE-REPLY, ts〉σr where
each component is authenticated by its replica r and all
statements contain the same timestamp ts. Given a certifi-
cate c, we use the notation c.ts to denote the timestamp in
that certificate, and we use the notation c.h to denote the
hash in a prepare certificate c.

3

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Protocol at client c to write value val.
• phase 1.

1. send 〈READ-TS,nonce〉 to all replicas

2. wait for a quorum of valid (well-formed, and cor-
rectly authenticated) replies of the form 〈READ-TS-
REPLY,p, nonce〉σr , authenticated by the replier, where
p is a correct prepare certificate (well-formed, and all
signatures verify).

Select Pmax, the certificate containing the largest times-
tamp.

• phase 2

1. send 〈PREPARE,Pmax, t, h(val), Wcert〉σc , authenti-
cated by c, to all replicas. Here t = succ(Pmax.ts, c),
and Wcert is the write certificate of c’s last write (as
explained later) or null if this is c’s first write.

2. wait for a quorum of valid (well-formed, correctly
signed, with matching values for h and t) replies of the
form 〈PREPARE-REPLY, t, h〉σr . These replies form a
prepare certificate Pnew for h and t.

• phase 3.

1. send 〈WRITE, val, Pnew〉σc to all replicas.

2. wait for a quorum of valid (well-formed, and correctly
signed) replies of the form 〈WRITE-REPLY, t〉σr . These
replies form a write certificate, which the client retains
for its next write.

Figure 1. Client write protocol (pseudocode).

Each replica keeps the following per-object information:

• data, the value of the object.

• Pcert, a valid prepare certificate for h(data).
• Plist, a set of tuples 〈t, h, c〉 containing the timestamp,

hash, and client identifier of proposed writes.

• writeTS, the timestamp of the latest write known to have
completed at 2f + 1 replicas.

Our system can deal with multiple objects; each object
would have a distinct identifier and each read and write
would identify the object of interest. To simplify the pre-
sentation, however, we consider a system containing only a
single object, and therefore we omit object identifiers from
the description of the protocol.

3.2.1 Write Protocol

Our protocols require that different clients choose differ-
ent timestamps, and therefore we construct timestamps by
concatenating a sequence number with a client identifier:
ts = 〈ts.val, ts.id〉. We assume that client identifiers are
unique. To increment a timestamp a client with identifier
c uses the following function: succ(ts,c) = 〈ts.val + 1, c〉.

Protocol at replica r to handle the write protocol messages.

• phase 1. On receiving 〈READ-TS,nonce〉:
reply 〈READ-TS-REPLY,Pcert, nonce〉σr .

• phase 2. On receiving 〈PREPARE,prepC , t, h, writeC〉σc :

1. if request is invalid (incorrectly authenticated, incorrect
certificates) or t �= succ(prepC .ts, c), discard request
without replying to the client.

2. if writeC isn’t null, set writeTS =
max(writeTS , writeC .ts), and remove from Plist
all entries e such that e.ts ≤ writeTS .

3. if Plist contains an entry for c with a different t or h,
discard request without replying to the client.

4. if 〈c, t, h〉 isn’t already in the Plist, and t > writeTS, add
〈c, t, h〉 to Plist

5. reply 〈PREPARE-REPLY,t, h〉σr .

• phase 3. On receiving 〈WRITE, v, Pnew〉σc :

1. if request is invalid (incorrectly authenticated, or signa-
tures in certificate do not verify), or Pnew .h �= h(v),
discard request without replying to client.

2. if Pnew .ts > Pcert.ts, set data to v and Pcert to Pnew

3. reply 〈WRITE-REPLY,Pnew .ts〉σr .

Figure 2. Replica write protocol.

Timestamps can be compared in the usual way, by compar-
ing the val parts and if these agree, comparing the client
ids.

Figures 1 and 2 give the pseudocode of our three-phase
write protocol, for the client and replicas respectively. In
all phases, clients retransmit their requests to account for
lost messages; they stop retransmitting once they collect
a quorum of valid replies. (Note that we use only client
retransmission; this handles the loss of both client request
messages and replica replies.)

Phase 2 processing at the replica is the crucial part of the
algorithm. The replicas check to ensure that the timestamp
being proposed is correct, that the client is doing just one
prepare, that the value being proposed does not differ from a
previous request for the same timestamp, and that the client
has completed its previous write.

3.2.2 Read Protocol

The read protocol usually requires just one phase.
Phase 1. The client sends a 〈READ, nonce〉 request to all
replicas. A replica replies with its value, prepare certifi-
cate, and nonce, all authenticated by it. The client waits for
a quorum of valid responses and chooses the one with the
largest timestamp (this is the return value). If all the times-
tamps are the same the read protocol ends.

4

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Phase 2. Otherwise the client performs the write-back
phase for the largest timestamp; this is identical to phase
3 of writing, except that the client needs to send only to
replicas that are behind, and it must wait only for enough
responses to ensure that 2f + 1 replicas now have the new
information.

The read protocol uses client retransmission to account
for lost messages, as in the write operations.

3.3 Protocol Costs

3.3.1 State and Message Complexity

The amount of state stored by the BFT-BC algorithm is
small: the only state components that are non-constant are
the prepare list, which is a set of timestamps and hashes of
prepared writes, and the prepare certificate stored at each
replica.

The size of the prepare list is O(|C|), where |C| is the
number of allowed writers. Generally this will not be a large
number, but in addition the list is small because when repli-
cas receive write certificates in phase 2, they remove old
entries with a lower timestamp than the one in the write cer-
tificate. We could speed up removing entries from the list if
we propagated write certificates in more messages, e.g., in
read requests.

The size of the prepare certificate is O(|Q|), where |Q| =
2f + 1.

The number of messages exchanged by an operation in
BFT-BC is O(|Q|), since each operation consists of three
RPCs (i.e., a sequence of a request message and the respec-
tive reply) to a quorum of replicas, assuming no retrans-
missions are required. The total message size for each op-
eration is O(|Q|2), because some of the messages contain
certificates whose size is O(|Q|).

3.3.2 Cost of Authentication

In the above description we mentioned that certain mes-
sages or statements were authenticated, but the kind of au-
thentication that may be used was unspecified. This issue
is important since different techniques have different costs:
we can authenticate a point-to-point message by means of
symmetric cryptography by establishing session keys and
using message authentication codes (MACs). This does not
work for signing statements that have to be shown to other
parties, in which case we need to rely on more expensive
public key cryptography.

Our protocol requires signing using public key cryptog-
raphy in two places: the phase 2 and phase 3 responses.
These signatures are needed because they are used as proofs
offered to third parties, e.g., the prepare certificate is gen-
erated for one client but then used by a different client to
justify its choice of the next timestamp.

A further point is that only the phase 2 response signature
needs to happen in the foreground. The signature for the
phase 3 response can be done in the background: a replica
can do this after replying to the phase 2 request, so that
it will have the signature ready when the phase 3 request
arrives.

4 Correctness Condition

This section defines the correctness conditions for a vari-
able shared by multiple clients that may incur Byzantine
failures. We begin by defining histories (Section 4.1), and
then we give our correctness condition.

4.1 Histories and Stopping

We use a definition of history similar to the one proposed
in [6], extended to handle Byzantine clients.

The execution is modeled by a history, which is a se-
quence of events of the following types:
• Invocation of operations.
• Response to operation invocations.
• Stop events.

An invocation by a client c is written 〈c : x.op〉 where x is
an object name and op is an operation name (possibly in-
cluding arguments). A response to c is written 〈c : x.rtval〉
where rtval is the response value. A response matches an
invocation if their object names agree and their client names
agree. A stop event by client c is written 〈c : stop〉.

A history is sequential if it begins with an invocation, if
every response is immediately followed by an invocation (or
a stop or no event), and if every invocation is immediately
followed by a matching response. A client subhistory H |c
of a history H is the subsequence of all events in H whose
client names are c. A history is well-formed if for each client
c, H |c is sequential. We use H to denote the set of well-
formed histories.

An object subhistory H |x of a history H is the subse-
quence of all events whose object names are x and a history
H is a single-object history for some object x if H |x = H .
A sequential specification for an object is a prefix-closed
set of single-object sequential histories for that object. A
sequential history H is legal if each object subhistory H |x
belongs to the sequential specification of x.

An operation o in a history is a pair consisting of an in-
vocation inv(o) and the next matching response rsp(o). A
history H induces an irreflexive partial order <H on the op-
erations and stop events in H as follows: o0 <H o1 if and
only if rsp(o0) precedes inv(o1) in H ; o0 <H 〈c : stop〉 if
and only if rsp(o0) precedes 〈c : stop〉 in H ; 〈c : stop〉 <H

o1 if and only if 〈c : stop〉 precedes inv(o1) in H ; and
〈c1 : stop〉 <H 〈c2 : stop〉 if and only if 〈c1 : stop〉 pre-
cedes 〈c2 : stop〉 in H.

5

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

4.1.1 Verifiable Histories

The notion of linearizability [6] is applied to a concurrent
computation, which is modeled by a history (a finite se-
quence of invocation and response events by all processes).

It would be difficult to model such computations in our
environment, since faulty processes do not obey any spec-
ification, and therefore we cannot define what an invoca-
tion or a response means for such processes. However, we
know that after a STOP event from a faulty process it will
halt, meaning that it can no longer produce correctly signed
messages (although we can still observe the replay of old
messages after a STOP event). In practice this may corre-
spond to different scenarios, e.g., an administrator removing
the node’s public key from the system’s access control list
(this occurrence implies a stronger notion of STOP where re-
plays are also discarded, but our correctness condition and
the correctness of our algorithms do not require this); or
turning off the node before it can leak its private key, even
if the node leaked several signed messages before halting
(e.g., this might be enforced using a secure coprocessor [7],
but we do not require their use).

Therefore we introduce the concept of a verifiable his-
tory which is a history that contains the sequence of invo-
cations and responses from correct clients, and stop events
from faulty clients.

The correctness condition we present next is applicable
only to verifiable histories.

4.2 Correctness Condition

We are now ready to define the correctness condition
for variables shared by multiple processes that may incur
Byzantine failures.

The idea is that, as in linearizability [6], we require
that the verifiable history looks plausible to the correct pro-
cesses, i.e., that there is a sequential history in which all pro-
cesses are correct that explains what the correct processes
observed. Furthermore, we require that once a faulty client
stops, its subsequent effects on the system are limited in the
following way: The number of operations by that client that
are “seen” by correct clients after it stopped is bounded by
some constant.

These concepts can be formalized as follows.
Definition 1 A verifiable history H ∈ H is BFT-linearizable
if there exists some legal sequential history H ′ ∈ H such
that

1. H |p = H ′|p, ∀p ∈ Cok
2. <H⊆<H′

3. ∀c ∈ Cbad : 〈c : stop〉 ∈ H ⇒
(∃h1, h2 ⊆ H ′ : H ′ = h1 〈c : stop〉 h2 ∧
|{o ∈ h2 : o = 〈c : x.op〉}| ≤ max-b)

Points 1 and 2 of the definition above state that there
must exist a sequential history that looks the same to cor-
rect processes as the verifiable history in question, and that
sequential history must preserve the <H ordering (in other
words, if an operation or a stop event precedes another op-
eration or stop event the verifiable history, then the prece-
dence must also hold in the sequential history).

Point 3 says that if a faulty client c stops, then when we
look at the sequential history and consider the sub-history
after the stop event by c (this is h2), the number of events
by client c in that history is bounded by max-b.

Note that there is a counter-intuitive notion that a bad
client can execute operations after it has stopped. This cor-
responds to the notion that the bad client left some pending
operations (e.g., with a colluder) before it left, and this is
precisely the effect we want to minimize.

We can now define a BFT-linearizable object to be an
object whose verifiable histories are BFT-linearizable with
respect to its sequential specification.

5 Correctness Proof

This section sketches a proof that the algorithm pre-
sented in Section 3 meets the correctness conditions pre-
sented in Section 4.

The idea is to look at what kind of properties we can en-
sure given a certain state of the system when a faulty client
c stops. If we look at the current-ts values stored at that
instant, we can guarantee the following.
Lemma 1. Let tsmax be the f + 1st highest timestamp
stored by non-faulty replicas at time tstop (when some
faulty client c stops). Then the following must hold

1. At any time up to tstop, no node can collect a write cer-
tificate for a timestamp t′ such that t′ > tsmax.

2. There are no two timestamps t1, t2 > tsmax such that
client c assembled a prepare certificate for t1 and t2.

3. No two prepare certificates exist for the same timestamp
t > tsmax and different associated values.

Proof.

1. By algorithm construction, a nonfaulty replica will not
sign an entry in a write certificate vouching for a times-
tamp higher than the one held in the variable current-ts.
Since non-faulty replicas always store increasing times-
tamp values, this means that the number of signatures
that can be held in the system at time tstop for times-
tamps higher than tsmax is at most 2f (i.e., f from faulty
replicas and the f correct replicas that may hold times-
tamps higher than tsmax).

2. By contradiction, suppose that client c held prepare cer-
tificates for t1, t2, both greater than tsmax. The two cer-
tificates intersect in at least one nonfaulty replica. By

6

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

part (1) of this lemma, that replica had its write-ts vari-
able always at a value less than or equal to tsmax (at all
times up to and including tstop). Therefore that replica
could not have signed its entry in both certificates, since
after signing the first one (say, for t1) it would insert an
entry for client c and t1 in its prepare list, and that entry
would not be removed (because of the value of write-ts),
which prevents the replica from signing its entry in the
certificate for t2.

3. Suppose, by contradiction that two prepare certificates
exist for timestamp t and values v and v′. By the quo-
rum intersection properties, these two prepare certifi-
cates contain at least one signature from the same correct
replica. By part (1) of this lemma, no write certificate
was ever assembled for timestamps greater or equal than
tsmax, and these entries in the prepare list were never re-
moved. This violates the constraint that correct replicas
do not sign a timestamp that is already in its prepare list
for a different value.

We are now ready to show the correctness of our algo-
rithm.
Theorem 1. The BFT-BC algorithm is BFT-linearizable.
Proof. Consider any correct reader in the case that the
writer is correct. In this case, the quorum initially accessed
in a read operation intersects the quorum written in the most
recently completed write operation in at least one correct
replica. Therefore, the read returns either the value in the
most recently completed write, or a value with a higher
timestamp (which could be written concurrently with the
read). Since a read also writes back its obtained value and
timestamp to a quorum of processes, any subsequent read
by a correct reader will return that timestamp value or a later
one. So, for any execution, we construct the history needed
to show BFT-linearizability by putting every read right after
the write whose value it returns.

If the writer is faulty, we construct the sequential history
to show BFT-linearizability as follows: for each read by a
correct reader returning v such that the phase 3 request for
v was produced by client cb, insert a write operation in the
history that writes v (by client cb) immediately before the
read.

Insert a stop event before the invocation of the first op-
eration that succeeded the stop event in the original (veri-
fiable) history (i.e., as late as possible while preserving the
<H dependencies).

It is left to show that if a faulty process stops, this his-
tory contains a bounded number of operations by that faulty
process after it stops.

To prove this condition we note that Lemma 1 part (2)
says that client c only assembled prepare certificates for a
single timestamp for a write that would become visible after
it stopped (i.e., with a timestamp greater than tsmax), and
Lemma 1 part (3) implies that if the write were to become

visible, the prepare certificate could only correspond to a
single value. This means the number of operations by the
faulty client c after it stops is at most one.

5.1 Liveness

As far as liveness is concerned, we guarantee that good
clients can always execute read operations in the time it
takes for two client RPCs to complete at 2f + 1 replicas
(i.e., the requests reaching the replicas and the respective
replies returning to the client). This is so because at least
2f + 1 replicas will provide them with the appropriate an-
swers (client requests are answered unconditionally pro-
vided the requests are well-formed). For the write proto-
col, the operation will complete in the time for three client
RPCs to complete in 2f + 1 replicas, and the trick is to
ensure that their phase 2 requests are never refused (since
phase 1 requests are answered unconditionally and phase 3
requests are answered if they contain a valid prepare certifi-
cate, which good clients will always send).

The phase 2 request also gets replies since the client will
submit a correct timestamp and hash, plus the write cer-
tificate for its latest write; the latter allows the replica to
discard the client’s entry in the prepare list and accept the
prepare request.

6 Optimized BFT-BC Algorithm

This section describes our optimized protocol, which
usually requires only two phases to do a write, and proves
that the optimized protocol satisfies our correctness condi-
tion.

6.1 Optimized BFT-BC

Our plan is to avoid one of the phases by merging it with
another phase. We cannot merge phases 2 and 3 since the
protocol requires that the prepare information be stored at
f +1 honest replicas before the client can do phase 3: this is
how we avoid a bad client being able to create many writes
in advance that could be launched after it leaves the system.
Therefore, we will merge phases 1 and 2.

The idea is that the client sends the hash in the phase 1
request and the replica does phase 2 on its behalf: it predicts
the next timestamp, adds the new timestamp with the hash
to the prepare list, and returns this information, signed by
itself. If the client receives a quorum of responses all for a
particular new timestamp, it can move to phase 3 immedi-
ately.

This optimization will work well in the normal case
where writes are received by all replicas in the same or-
der. Therefore the good client is highly likely to receive a

7

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

quorum of replies for the same timestamp in the responses
in phase 1, and most of the time a write will require two
phases.

However there are problems that must be overcome for
the optimization to be used. They occur when there are con-
current writes or when other clients are faulty.

A simple example is the following. Suppose a client does
phase 1 for some hash h. It receives a PREPARE-REPLY for
a particular timestamp t from replicas R1 and R2, and a
PREPARE-REPLY for a larger timestamp t′ from replicas R3
and R4. The client will then be unable to get approval for
either t or t′, because to approve the request a replica would
need to violate our restriction on having at most one entry
per client on the prepare list.

Clearly we need to find a way to allow clients to do
writes in cases like this one. But given our current con-
straints this is not possible.

To allow the client to make progress we will weaken our
constraint on how many entries a client can have in the pre-
pare list. In particular we will change the replica state to
have a second list of prepared writes, optlist, with the con-
straint that a client can have at most one entry per list. The
two entries for the same client (one in each list) might be for
different timestamps, or they might be for the same times-
tamp. In the latter case, it will be possible for the write with
that timestamp to happen twice (when there is a bad client).
In this case we need a way to order the writes: we will do
this by using the numeric order on their hashes.

6.2 Detailed Write Protocol

Phase 1. The client, c, sends a READ-TS-PREP request con-
taining the hash of the proposed value, and the client’s cur-
rent write certificate, to all replicas.

Each replica processes the request in the usual phase-
2 way, including removing entries from the prepare lists.
Then it will do the prepare on behalf of the client for times-
tamp t′ = succ(ts, c), unless the client already has an entry
in either prepare list for a different timestamp or hash. If
the prepare is successful, the replica adds an entry to the
optlist for t′ and the hash (unless that entry is already in the
list) and returns a PREPARE-REPLY signed by it; otherwise
it returns a normal phase 1 response.

If the client gets a quorum of PREPARE-REPLY (i.e., ob-
tains a prepare certificate) for the same new timestamp, it
moves to phase 3.
Phase 2. Otherwise the client chooses the new timestamp
as before and carries out phase 2 for it (as in the normal pro-
tocol). When it has a quorum of signatures for this choice
(obtained either in phase 1 or phase 2), it moves to phase 3.

Replicas handle phase 2 requests as in the normal proto-
col; they ignore the optlist in this processing.
Phase 3. The client does phase 3 in the normal way.

The replica also does normal processing, except that the
timestamp in the write might match the current timestamp,
but with a different value: in this case it retains the value
with the larger hash.

6.3 Discussion

The optimized protocol can lead to a client having en-
tries on two prepare lists (normal and optimized). A dis-
honest client can exploit this to carry out phase 3 twice as
part of the same write request. And as a result, each dis-
honest client can leave two lurking writes behind when it is
removed from the system.

Another point is that it is now possible for honest clients
to see valid responses to a read request that have the same
timestamp but different values. The client protocol resolves
this situation by returning (and writing back) the value with
the larger hash.

6.4 Optimized BFT-BC Correctness

For the optimized protocol some of the invariants shown
in Section 5 need to be slightly modified. Notably, Lemma
1 parts (2) and (3) no longer hold, since a faulty client can
now collect two distinct prepare certificates (for its entries
in the prepare list and optlist). Therefore Lemma 1 parts (2)
and (3) become:
Lemma 1’ (2). For the optimized BFT-BC protocol, no
more than two prepare certificates can exist for distinct
timestamp, value pairs, with timestamps greater than tsmax.
Proof. Same as Lemma 1, but taking into consideration
that the new algorithm allows for one entry in the normal
prepare list, and another in the optimistic prepare list.

This only affects the proof of Theorem 1 in that the num-
ber of operations by a faulty client after it stops becomes 2
instead of 1, and therefore the main theorem still holds:
Theorem 2. The optimized BFT-BC algorithm is BFT-
linearizable.

7 Stronger Correctness Conditions

In this section we propose a stronger correctness condi-
tion than the one introduced in Section 4, and discuss how
to extend the current protocol to meet the new condition.

7.1 New Correctness Conditions

The idea is that we want to further limit the effects a bad
client can have on the system once it stopped such that, if
correct clients execute a constant number of write opera-
tions after a faulty client stops, then no more operations by
that client will ever be “seen”. (We can generalize this to

8

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

any state-overwriting operation in a set Ooverwrite in case
the variable has an interface other than read and write.)

We formalize the BFT-linearizable+ condition as being
equal to the condition presented in Section 4, except that
point (3) is modified to state that no operations by the faulty
client c appear after the kth consecutive state-overwriting
operation in h2 (where k = O(1)).

7.2 Modified BFT-BC protocol

The BFT-BC protocols do not meet this stronger correct-
ness condition because a set C of colluding clients can pre-
pare a series of |C| writes with successive timestamps, leav-
ing a lurking write that requires |C| writes by correct clients
to ensure that the lurking write will no longer be seen.

To address this issue, we need to modify the BFT-BC
protocol to require the client to submit a write certificate
in its prepare request (along with the information it already
sends in the prepare). This certificate ensures that the times-
tamp it is proposing is the successor of one that corresponds
to a write that has already happened; a replica will discard
the request if this condition does not hold.

The client can easily assemble this certificate in phase
1 if all responses to its phase 1 request contain the same
timestamp. If they don’t, the client can obtain the certificate
by doing a write-back; the difficulty is getting the value to
write back. This could be accomplished by having phase 1
actually be a read, but this is unattractive since values can be
large. So instead, the client fetches the value, if necessary,
in a separate step; effectively it redoes phase 1 as a normal
read, although this can be optimized (e.g., to fetch from the
f + 1 replicas that returned the largest timestamps).

This scheme guarantees that the timestamp in the lurking
write is the successor of a lower bound on the value stored
by at least f + 1 non-faulty replicas when the bad client
stopped. Consequently, if there were two successive writes
by correct clients after the bad client stopped, the lurking
write would no longer be seen.

8 Related Work

In this section we discuss the previous work that dealt
with Byzantine clients, and also the previous work on cor-
rectness conditions.

Our protocol is more efficient than those proposed pre-
viously. Furthermore it enforces stronger constraints on the
behavior of Byzantine clients: we handle all problems han-
dled by previous protocols plus we limit the number of lurk-
ing writes that a Byzantine client can leave behind after it
has left the system.

In addition we provide stronger liveness guarantees than
previous protocols: in particular read operations cannot re-
turn null values, and reads terminate in a constant number of

rounds, independently of the behavior of concurrent writers.

The initial work on Byzantine quorum systems [9] de-
scribed the quorum protocol discussed in Section 3, which
used 3f +1 replicas, one phase reads and two phase writes,
and did not handle Byzantine clients. That paper also de-
scribed a protocol for a system of 4f + 1 replicas that pre-
vented malicious clients from associating different values
with different timestamps; the protocol required a three-
phase communication among the replicas to be carried out
as part of performing a write (in addition to the client-server
communication) where servers guarantee that each value
and timestamp pair is propagated to a quorum. The proto-
col provides liveness, but at the expense of providing weak
semantics for reads where they could return a null value in
case of concurrent writes.

The Phalanx system [10] improves on the previous result
in two ways. First it added the write-back phase (to the
simpler protocol) as a way to ensure atomicity for reads.
In addition it presented a more efficient protocol to handle
Byzantine clients. That protocol used 4f + 1 replicas, but
clients carried out a three-phase protocol to do a write, and
the server-to-server communication was no longer needed.
In the new protocol for Byzantine clients, read operations
could return a null value if there was an incomplete or a
concurrent write.

The work by Goodson et al. [5] proposes a solution for
erasure-coded storage that tolerates Byzantine failures of
clients and servers; this system requires 4f + 1 replicas.
This work is focused on integrating erasure coded storage
with Byzantine quorum protocols and they tolerate Byzan-
tine clients that write different “values” to different replicas
by having the next reader detect the inconsistency and, if
possible, repair it. In some cases, reads may return null.

The work of Martin et al. [12] proposes a protocol that
only uses 3f + 1 replicas (like our protocol). They require
a quorum of 2f + 1 identical replies for read operations
to succeed, which is difficult to ensure in an asynchronous
system. Their solution is to assume a reliable asynchronous
network model, where each message is delivered to all cor-
rect replicas. This means that infinite retransmission buffers
are needed in an asynchronous environment like the Inter-
net: the failure of a single replica (which might just have
crashed) causes all messages from that point on to be re-
membered and retransmitted. In this protocol concurrent
writers can slow down readers. The authors discuss how
to extend their protocols to guarantee that Byzantine clients
associate the same value with the same timestamp by having
servers forward the writes among themselves (again, this is
possible due to their network model) and keep the highest
value for each timestamp. They also discuss how to prevent
a faulty client from exhausting resources at correct servers,
but at the expense of possibly sacrificing liveness for correct
readers.

9

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Two papers (Bazzi and Ding [2], Cachin and Tessaro [3])
describe protocols that enforce non-skipping timestamps. In
both cases, the protocols are based on the Martin et al. work,
which uses the reliable asynchronous network model with
the problems we mentioned above. Furthermore these pa-
pers do not try to address the issue of lurking writes. The
protocol of Bazzi and Ding [2] requires 4f + 1 replicas,
while Cachin and Tessaro [3] require 3f + 1 replicas.

Attiya and Bar-Or [1] present quorum constructions
that tolerate a weaker form of Byzantine failures: semi-
Byzantine clients. These clients can fail either by stopping,
or by writing an erroneous value to a shared register some
number of times, but otherwise follow the protocol. We
improve on this paper by considering a more generic fault
model for clients.

Our definition of BFT-linearizability presented in Sec-
tion 4 builds upon a condition (called Byznearizability) pro-
posed by Malkhi et al. [11]. Their work was the first to
point out the problem of lurking writes. However, their cor-
rectness condition is weaker than ours, since they require
only that the number of lurking writes is finite, whereas we
require that the number of lurking writes is bounded by a
constant (one or two in the case of our protocols). In fact,
their correctness condition is met by the variant of the Pha-
lanx protocol [10] that was designed to handle only honest
clients. Another point is that Byznearizability did not con-
sider the possibility that malicious clients might halt before
they could leak their private keys, and therefore Byzneariz-
ability requires all faulty clients and servers to stop in order
to provide any guarantees. Our condition is also stronger
due to the fact that we consider the number of overwrites to
mask all the lurking writes.

9 Conclusions

This paper has presented novel protocols for Byzan-
tine quorum systems that provide atomic semantics despite
Byzantine faulty clients. Our protocols are more efficient
and handle more problems caused by Byzantine clients than
previous proposals. We prevent bad clients from leaving
behind more than one or two lurking writes and from ex-
hausting the timestamp space. In addition Byzantine clients
are unable to interfere with good clients in the sense that
they cannot prevent good clients from completing reads and
writes, and they cannot cause good clients to see inconsis-
tencies. Another point is that an extension of our protocol
can additionally ensure that the effects of a Byzantine client
are no longer visible to good clients at all after two succes-
sive writes by good clients (or four successive writes in the
optimized protocol).

We also presented strong correctness conditions that ad-
dress the above problems: we require that protocols guar-
antee atomicity for good clients, and limit what can be done

on behalf of bad clients once they leave the system. Fur-
thermore we proved that our protocols are both safe (they
meet those conditions) and live.

Our protocols are designed to work in an unreliable asyn-
chronous system like the Internet and they are highly effi-
cient. Our base protocol completes writes in three network
round-trips; the optimized protocol reduces this cost so that
writes normally complete in two network round-trips (at the
expense of allowing one more lurking write). In either case
reads normally complete in one phase, and require no more
than two phases, no matter what the bad clients are doing.
We achieve these efficiencies because of our use of certifi-
cates, which allow clients or replicas to know that informa-
tion presented to them is valid, without having to hear the
same thing directly from 2f + 1 replicas.

Acknowledgments
We would like to thank Rida Bazzi, Christian Cachin,

and the anonymous reviewers for helpful feedback.

References

[1] H. Attiya and A. Bar-Or. Sharing memory with semi-
byzantine clients and faulty storage servers. In Proc. of the
22nd Symposium on Reliable Distributed Systems, 2003.

[2] R. Bazzi and Y. Ding. Non-skipping timestamps for byzan-
tine data storage systems. In Distributed Computing, 18th
International Conference (DISC), pages 405–419, 2004.

[3] C. Cachin and S. Tessaro. Optimal resilience for erasure-
coded byzantine distributed storage. Technical Report RZ
3575, IBM Research, Feb. 2005.

[4] D. K. Gifford. Weighted voting for replicated data. In Proc.
of the Seventh Symposium on Operating Systems Principles,
Dec. 1979.

[5] G. Goodson, J. Wylie, G. Ganger, and M. Reiter. Efficient
byzantine-tolerant erasure-coded storage. In Proc. of the
International Conference on Dependable Systems and Net-
works, June 2004.

[6] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Ob-
jects. In Conference Record of the 14th Annual ACM Sym-
posium on Principles of Programming Languages, 1987.

[7] IBM. http://www.ibm.com/security/cryptocards/, 2005.
[8] L. Lamport, R. Shostak, and M. Pease. The Byzantine Gen-

erals Problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, July 1982.

[9] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Jour-
nal of Distributed Computing, 11(4):203–213, 1998.

[10] D. Malkhi and M. Reiter. Secure and scalable replication in
phalanx. In Proc. of the 17th IEEE Symposium on Reliable
Distributed Systems, Oct. 1998.

[11] D. Malkhi, M. Reiter, and N. Lynch. A Correctness Con-
dition for Memory Shared by Byzantine Processes. Unpub-
lished manuscript, Sept. 1998.

[12] J. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
storage. Technical Report TR-02-38, University of Texas
at Austin, Department of Computer Sciences, Aug. 2002.

[13] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases. ACM Transac-
tions on Database Systems, 4(2):180–209, June 1979.

10

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

