The Language-Independent Interface of the
Thor Persistent Object System

Barbara Liskov Mark Day Sanjay Ghemawat Robert Gruber
Umesh Maheshwari Andrew C. Myers Liuba Shrira

February 24, 1993

Abstract

Thor is a new object-oriented database system being developed at MIT. It allows appli-
cations written in different programming languages, and possibly running on heterogeneous
machines and operating systems, to share objects conveniently. Our goal is to provide safe
sharing of objects with higher-level semantics than is typical for today’s file systems and
databases, while still providing good performance. This paper describes the interface of
Thor and also discusses some of the implementation techniques we are using to achieve our
performance goal.

1 Introduction

Most organizations run their applications on heterogeneous equipment. Not only do these
computers differ in their hardware, but they frequently run different software, e.g., different
operating systems, as well. In addition, applications may be implemented in different program-
ming languages and more than one language might even be used within a single application.
Nevertheless, applications may need to share information in spite of these differences.

Thor is a new object-oriented database system intended to support such sharing. It is
intended to run on a heterogeneous collection of machines connected by a communications
network. It provides a universe of objects that can be shared by programs written in differ-
ent programming languages. Objects are persistent and highly-available (i.e., with very high
probability, objects entrusted to the system are stored reliably and are accessible when needed).
They are encapsulated and active: applications can access them only by invoking their methods
and the calls execute inside Thor, which ensures that no violation of encapsulation is possible.
Objects belong to types that determines their methods; users can define new types and types

can be organized into a type hierarchy. Finally, Thor defines a persistent root for the universe



and automatically discards objects that are no longer reachable from the root, and users are
able to control object sharing by limiting the methods that specific users can call.

This paper discusses the Thor interface, and also describes some the implementation tech-
niques we are using to achieve good performance. Achieving good performance is especially
challenging since Thor is intended to run in a distributed environment in which applications
run at client machines and persistent objects are stored at servers. This paper focusses on
the techniques we use at the client machines to improve performance. Unlike other systems,
Thor uses object caching rather than caching pages or files. Since objects may be small, and
a client call might access many objects, when an object is fetched to a client workstation, we
also prefetch a number of related objects. We believe that object caching with prefetching will
provide better performance than more conventional approaches because we can get more useful
objects into our cache and therefore get better cache utilization.

In current practice, cross-language sharing of persistent objects is typically achieved by
file systems and databases. File systems often treat objects as uninterpreted byte streams, and
therefore inter-language sharing via file systems can be laborious and error-prone. Conventional
databases provide a more complex object structure, but the semantics of inter-language sharing
is often left undefined. In either case, the underlying representations of data objects are accessed
directly, making it impossible to enforce consistency contraints, and making it difficult to change
an object’s internal representation. Also, it is awkward or impossible for objects to contain
references to one another, and object deletion must be explicit, since any kind of garbage
collection is impossible if references cannot be distingushed from data.

Most existing object oriented databases, such as ObjectStore [15], Statice [28], Iris [9], and
Orion [14] are specific to a single language. Of the systems that support multiple languages,
the approach in GemStone [2] is the closest to ours; programs written in different languages
access persistant objects through a method-based interface. However, Gemstone violates object
encapsulation to enhance query performance. The approach in O, [7] is very different; different
languages can access Oy objects and implement methods. However, even though such a language
keeps its syntactic appearance, it is reimplemented to include the O, data model, in effect
resulting in a semantically different language. Finally, unlike any object systems of which we

are aware, Thor objects are highly available and reside at multiple, distributed servers.



The remainder of this paper describes Thor and its implementation. We begin in Section
2 by describing the Thor interface. Then in Section 3 we discuss the Thor implementation,
focusing on what happens in the part of Thor that runs on the client workstations. We conclude

with a discussion of the current status of Thor and our future plans.

2 The Thor Interface

This section describes how users access active objects in the Thor universe, what causes objects
to become persistent, and how users can extend Thor by providing new types and implemen-

tations.
2.1 Sessions, Handles, and Values

Interaction with Thor takes place within a session. A session starts with the client asking for
the root object of the system. Either the client or Thor may end the session. Thor will end a
session if it is unable to communicate with the client workstation for an extended period; this
can happen because the client crashes or because of a network problem (a partition).

When the session starts, the client receives a handle for the root object. A handle is a small
opaque data structure that the client application uses to refer to a Thor object. It is meaningful
only for one session: if a client stores a handle outside Thor, ends its session, and starts another
session, the stored handle will be invalid, and Thor will refuse to treat it as an object reference.

Clients use handles to request Thor to invoke methods of object (i.e., they use them to
do navigation. Method calls return additional handles, and also walues, such as integers or
characters. Values show up on the Thor interface in an ezternal representation defined by their
type; the client program can then map the value into some internal form that makes sense in
the client programming language[11].

Clients can also invoke stand-alone procedures. Such procedures are used to create new
objects, and also to do computations that operate on objects rather than belong to objects

(e.g., a sort routine).
2.2 Transactions

Every interaction with Thor implicitly takes place within an atomic transaction. Transactions

simplify the semantics of the system in the presence of concurrency and failures, but they



require that clients identify the points at which data structures are consistent and should
become persistent. When the client reaches such a point, it attempts to commit its changes.
The attempt may fail, in which case the transaction aborts and all of its changes are undone;
the client can also abort voluntarily. Starting a session implicitly starts a transaction, and
committing or aborting implicitly starts the next transaction. Thus, client applications need

to identify only the end of a transaction, not the beginning.
2.3 Persistence by Reachability

Thor provides a persistent root of the universe. All objects reachable from that root are
themselves persistent. Objects created during a session become persistent is already-persistent
objects are modified to refer to them by a transaction that commits.

For safety, Thor objects are never explicitly deleted. Instead, garbage collection reclaims
resources used by unreachable objects. In addition to the persistent root, handles also serve as
roots of garbage collection. It is desirable (but not required) for a client application to notify
Thor about handles it is no longer using. For example, if the client language is garbage-collected,

its collector could notify Thor about handles still in use at the end of a collection.
2.4 Extending the Type Universe

Users can define new types and they can provide new implementations for existing types. We
provide a compiler that processes such definitions and adds objects that describe them to Thor
in a type library. The library provides mechanisms for browsing the objects in it. (The library
is actually an application of Thor that we provide.)

Types can be organized into a hierarchy. A type can have zero or more supertypes. A
subtype must provide the methods of each of its supertype with compatible signatures [4]; in
addition, it should simulate the behavior of its supertypes as discussed in [23, 22]. We allow
a subtype to rename the supertype’s methods, so that if the supertype has a method named
“bar”. in the subtype we can choose to name the method “foo” instead. Renaming is useful to
avoid the name clashes that might otherwise occur (e.g., two supertypes of a subtype have a
method named “foo” but with different behavior).

New types and implementations must be defined by writing modules in a new programming

language we are developing. The new language has many safety features that we believe are



crucial in a persistent object store (e.g., it is strongly-typed and garbage collected). By contrast,
many client languages (e.g., C) are unsafe and allow program errors (e.g., dangling references)
that could damage or destroy persistent objects if we allowed programs written in them to
run inside of Thor. Our approach is similar to that of GemStone [2], with its GemStone
DDL/DML; however, while that language is an adaptation of Smalltalk, ours is a new object-
oriented language, influenced by CLU [19] and Modula-3 [3].

Programmers can ignore our programming language if they just use existing types and im-
plementations but not if they want to define new types or implementations. Because we realize
that programmers would prefer not to cope with another language, we are studying whether

restricted dialects of client languages can also be used to define new types and implementations.
2.5 Queries

Users of Thor can access objects by running queries over sets. Sets are objects in Thor, and as
such they can be used in the same ways that other objects are used: they can be shared, are
represented to the client as handles, and so on. They provide methods for querying over their
members (e.g., a select based on a predicate). The efficient implementation of these methods

requires attention (see [12] for details), but queries do not have a special place in the interface.
2.6 Operations

This section summarizes the preceding discussion by describing the operations of the language-
independent interface. Figure 2.6 shows the calls made by the client to Thor and also the
information that flows back as a result of these calls. In general a call either provides results
or it signals an exception indicating a problem (e.g., the must-abort exception for the call of

commit.

2.6.1 Get-root and End-session

A client application begins by asking for the root of the system, providing some information to
identify itself. Thor may use the information to determine the actual object given to the client
as a root. The signal no-root is raised if the information does not allow Thor to determine an

appropriate root for the client.



get-root (client-info)

1 ... cal
- - oo hendle_ _ _ _ _ ________. . Pl
- returns
et no-root ..
call(handle, method, args) >l signals
results !

Client Thor

commit ()
must-abort

discard-handles/ retain-handles (array[handl€])

abort ()

end-session ()

Figure 1: The language-independent interface

The end-session operation informs Thor that all resources associated with maintaining the

current session may be discarded. The current transaction is aborted.

2.6.2 Call

To call a method, the client indicates the handle of the called object, the method name, and
zero or more arguments. If the call is successful, zero or more results are returned. Both the
arguments and results can handles and values. To call a stand-alone procedure, the handle
identifies the procedure objet, and the method is “execute”.

Thor checks that the call is type correct (the handle must be valid, and the object it identifies
must have a method of that name, and must take the given number and types of arguments) and
calls the method on the object if it is. The various signals indicate problems: invalid indicates
a bad handle, bad-call occurs if the call is not type correct, sig reflects a signal raised by the
called method, no-session indicates that Thor has closed the session, and will-abort indicates
that the current transaction cannot commit because it has made use of an obsolete copy of an

object.



Client Application Client Application
inLanguage L1 in Language L2

L1 veneer for Thor L2 veneer for Thor

Language-Independent Interface

THOR

Figure 2: Applications, veneers, and the language-independent interface

2.6.3 Commit and Abort

The commit and abort operations end the current transaction. A successful commit installs all
of the transaction’s changes in Thor. An abort, either from calling abort or when a commit
signals must-abort, undoes all of the changes of the current transaction. The creation of new
objects is not undone (it is difficult to understand what a variable referring to such an “uncreated
object” should mean), but any changes to that object are undone so that it returns to its state

as first created. (This is the same semantics as in Argus[17].)

2.6.4 Retain-handles and Discard-handles

These operations inform Thor about handles no longer needed by the client. Retain-handles lists
handles still in use by the client; discard-handles lists handles that will not be used subsequently.

We provide both forms to match different storage management strategies in the client.

3 Implementation

The architecture of the implementation is shown in Figure 3. Part of the implementation (the
veneers) sits on top of the interface; a veneer makes it easy to use Thor from a particular
programming language. Below the interface are components that run at client workstations
(the FEs) and components that provide reliable and highly-available storage for persistent
objects (the ORs). First we briefly discuss the veneers, and then the interface implementation,

focussing on what happens at the FEs.



3.1 Veneers

The Thor interface is intended to be used by compiler specialists to provide extensions to
programming languages. The extensions, which we call veneers, provide access to Thor features
in a way that is natural for the particular language. Application programmers make use of Thor
by writing programs in their language of choice, extended by the veneer. A veneer is defined just
once for a particular client language, probably in the form of a preprocessor for the compiler of
the client language. These techniques used in veneers are similar to those used in heterogeneous
distributed systems (e.g., [11, 7, 18]).

To support method calls, the veneer must provide client-side handles and also a way of
getting values. For the values, a veneer must define a language type for each value type and
a way of mapping between the external representation of a value and the representation of
that value in the language. For the handles, there might be a client-handle type H associated
with a particular Thor type T, and a set of procedures, one for each method of T, that take
a client-handle of type H as their first argument. The rest of the signature of the procedure
is derived from that of the method in some straightforward way. For example, for values, the
associated language type is used, and for handles, the associated handle type is used.

Client programmers use these veneer types in interacting with Thor. The veneer will provide
a way for them to look up the veneer specifications for types of interest. For example, it might
allow browsing of the Thor type library, but when a programmer looks at a type definition, he
or she sees the veneer presentation of the type (i.e., the signatures of procedures that stand
in for the methods). When calls to Thor appear in client programs the veneer compiler (or
preprocessor) generates code to make the call to Thor, i.e., it implements the procedures of the
client-side type. This is very much like a stub compiler in distributed systems [18, ?].

The client program usually runs in a separate address space to ensure safety; for some
safe languages we may allow the client and the FE to share a single address space. Since
inter-process calls are usually fairly expensive, it would be good to avoid them by bundling
several calls together. We are investigating ways of making such “combined operations”[?]; our

approach is based partly on the promises of Mercury[18], and partly on the work of Stamos[?].



fetch (oref) T

.- call
- - - - = - = === =- - b_lO_CK ____________ - /I ————— |
returns
commit (new-objs, mod-objects, read-objs) -
Lol B AR »
e e e e ] new-objs-info _ _ _ _ _ _ | ) signals
e must-abort
FE ping () .. OR
1
DR S 1
LA A

invalidate (xref)

trim-fe-table (array[oref])

Y

end-session ()

Y

Figure 3: The FE-OR interface

3.2 Implementation of the Interface

Thor is a distributed system consisting of front ends (FEs) and object repositories (ORs). The
ORs run on reliable server machines and provide persistent storage and concurrency control.
The FEs implement the language-independent interface and run on client machines.

Each object resides at a single OR at any point in time, but can move among ORs; ORs
track moving objects and participate in distributed garbage collection of persistent objects that
are no longer accessible from either the persistent root or a handle at an FE. ORs are replicated
for high availability and performance using the same technology as the Harp file system[20].

FEs are responsible for running client calls, communicating with ORs as neeeded. To make
calls run fast, FEs make use of three techniques: caching, prefetching, and swizzling. They use
the ORs via the interface shown in Figure 3.2: they fetch and prefetch objects into their cache
by calling the fetch operation, and commit transactions by calling the commit operation. The
remainder of this section focusses on the FE implementation. Details of the OR implementation

can be found in [21].



3.2.1 OR-Sessions

When an FE first contacts an OR, say to fetch an object, it opens an OR-session with the OR.
during the session, the FE and the OR maintain information about each other. At the OR
there is an FE-table, which is a conservative record of the references held by the FE to objects
at that OR.; the table is a root of garbage collection at the OR. When the client closes its
session with the FE, the FE closes its OR-sessions.

Thor guarantees that all objects accessible to a client (via a path from a handle) will not
be deleted by garbage collection. This guarantee is provided by leases [10]. An OR guarantees
to maintain a OR-session with an FE for a limited time: until the lease expires. Normally, the
FE renews the lease before it expires by sending ping messages in the background. In the event
of a network partition or a crash of the FE, the lease will expire at both the FE and the OR.
Ultimately the OR will close the session, discarding its FE-table, although it is very slow to do
so because doing so means the client session must be closed because some references accessible
from the client’s handles may no longer be valid. Meanwhile the FE must stop processing client
requests (since it cannot be sure that the OR still retains its OR-session information), although
it can delay closing the client session in the hopes that it will reestablish connection with the
OR and discover that the OR has not closed the OR-session.

More information can be found in [24]. It allows client sessions to survive failovers at ORs

and avoids the need to maintain session information on stable storage at ORs.

3.2.2 Buffer Management

Unlike other systems, Thor manages its buffers in terms of objects. Rather than bringing
in a page when an object is fetched, we bring in the requested object, together with some
other objects that are related to it. Objects provide a clean basis for concurrency control and
prefetching. Although DeWitt et al.[8] showed that interaction in terms of objects led to poor
performance compared to fetching pages, we believe that it is misleading to compare a system
that fetches single objects to a system that fetches single pages. The results of DeWitt et
al. do show the necessity of prefetching and transferring groups of objects, rather than single
objects. In Thor, we can transfer page-size groups of objects if we so choose; but we can also

transfer groups that are larger or smaller than pages, and we can choose those groups based on

10



the current interconnections of objects and the identity of the client application requesting an
object.

Our current plan is to follow pointers from the referenced object down some number of levels
(perhaps two) and prefetch all objects that are at the same OR as the requested object and
resident in the primary memory of that OR. (Furthermore, all these objects are highly likely to
be resident in the OR’s primary memory, as discussed in the next secton.) We believe that this
strategy is more likely to prefetch relevant objects than simply bringing over an object’s page.
We plan to experiment with this and other schemes later, perhaps including schemes where the
application can control prefetching. We are also exploring schemes for managing the FE buffer
[5].

An FE cache contains both copies of persistent objects and newly-created objects that have
not yet become persistent. Newly-created objects are not persistent when first created and
might never become persistent, in which case they will never be sent to ORs. By keeping
non-persistent objects entirely at FEs, we can avoid unnecessary expense; we effectively have
a generational garbage collector where the youngest generation is transient and exists only at

the front end.

3.2.3 Location-Dependent Names

We use location-dependent names to refer to Thor objects. Recall that each persistent object
resides at a particular OR, although it may move to a different one. An object’s name depends
on its current OR. The name is an zref, which is a pair (OR, oref). The orefis a name local to
that OR.

If an object at some OR R refers to another object at R, it does so by using just the oref of
that object. Orefs can be relatively small, e.g., 32 bits. Therefore, we do not need to allocate
very much space for these local references. Xrefs are of course much bigger. and cannot fit in
the space allocated for an oref. Therefore, objects cannot refer directly to remote objects. We
discuss how remote references are handled in Section 3.2.8.

An important aspect of our naming scheme is that fetching an object typically requires one
message round trip and at most one disk read. Only one round trip is needed because the FE

usually knows what OR to go to; this point is covered in the following sections. The OR can

11



usually fetch objects with at most one disk read because the oref actually contains two parts,
a segment number and an object number relative to that segment. The segment number is
looked up in a table that is small enough to be kept in primary memory. Therefore, the only
disk read needed is to get the segment. In fact even that read is usually not needed because
objects are clustered in segments and the OR maintains recently used segments in its cache.

Our scheme for object naming is discussed in more detail in [6].

3.2.4 Objects and Surrogates

When an object is copied to an FE. it is desirable to change its pointers to other objects to
direct memory pointers at the FE. i.e., to virtual memory addresses. If we make this change
then following pointers at the FE will be inexpensive; otherwise it would be expensive since we
would need to look up orefs and interpret them. ((?ref to loom or ocoze — one of these did this))
Changing orefs to addresses is called swizzling 77?.

In a scheme that uses swizzling, some way of handling pointers to objects that are not in
the cache is needed. This can be accomplished using either edge marking, in which the form of
the pointer indicates whether the object is present in the cache, or node marking, in which all
pointers refer to local objects, but some of them just represent non-resident objects. We use
the latter scheme; we call the non-residents surrogates. A surrogate contains its object’s xref.
It is like a forwarder in Mneme [26] or a leaf in LOOM [13].

Here is what happens when a group of objects arrives at an FE:

1. The objects are entered into the swizzle table. The swizzle table contains entries for every
object at the FE, mapping between xref of the object and its current virtual memory

address.

2. The requested object is swizzled: all its pointers to other objects are changed from orefs
to virtual memory addresses, by looking in the swizzle table. If an object referred to
isn’t at the FE (and therefore not in the swizzle table), we create a surrogate for it, enter
the surrogate in the swizzle table, and swizzle the pointer to contain the virtual memory

address of the surrogate.
After these two steps, we have a fully-swizzled copy of fetched object in the FE’s virtual memory,

12



FE

. surrogate

— memory address

(A) A surrogateis created for an uncached object

2] @
©

(B) The surrogate is "filled" when the actual object isfetched

Figure 4: The FE-surrogate for B is created, then filled

some number of prefetched objects registered in the swizzle table, which can be individually
swizzled on demand if some prefetched object is used later, and some surrogates that can be
filled if needed. When a method of the surrogate is called, the FE fetches its object from its
OR (using the xref in the surrogate to determine the OR), stores a pointer to the object in the
surrogate, and passes control to the code of the called method. An extra level of indirection is
introduced by each filled surrogate, but the link is snapped the next time the FE does garbage
collection. The situation is illustrated in Figure 3.2.4.

Thor can shrink an unmodified persistent object at any time, replacing the object with a
surrogate. One reason for such shrinking is to free space in FE buffers. Another, described in

section 3.2.6, is to remove an outdated version of an object from the cache.

3.2.5 Method Dispatch

Invoking methods at the FE can be made fast because our language is statically typed, allowing
a dispatch technique similar to that used in C4++. The fixed set of methods understood by a
type is mapped statically onto small integer indices. An object contains a pointer to a method

dispatch vector, each entry of which points to code for a method, at a statically-determined

13



index.

A surrogate object has a method dispatch vector like any other object, but it contains special
methods that fill the surrogate if they are called. Thus, every call is dispatched in the same
way, and code of regular methods need not examine the object to determine whether it is a
surrogate. Therefore, we incur no additional expense for surrogates for regular (non-surrogate)
objects.

We also use this dispatch vector technique for the prefetched (unswizzled) objects. The
dispatch vector for such an object points to special methods that first do the swizzling, then
update the dispatch vector to refer to the regular methods. This lazy swizzling avoids the filled
surrogate indirection. Also, eager swizzling would spend time swizzling many objects that are
prefetched but never used [25]; lazy swizzling avoids this overhead.

We are working on schemes that allow dispatching to be replaced by direct calls in the

presence of swizzling [27].

3.2.6 Transactions

The calls that make up a transaction run using objects at the FE, and fetching additional
objects if necessary. If a call hits in the cache, we do not want to communicate with an OR to
obtain a lock, since that would undo much of the advantage of prefetching. However, we cannot
lock prefetched objects, since we don’t know at that point whether they will even be used, nor
what the mode of use (read or write) will be. Therefore we use an optimistic concurrency control
scheme. Every object has a current version number. When a transaction tries to commit, if
it used an obsolete version of an object, the current version number of that object will have
changed, indicating that the transaction must abort.

The FE keeps track of which objects have been read or modified by the current transaction.
When the client application asks for the current transaction to commit, the FE uses this data
to assemble the information it needs to send to the ORs: the version numbers of all objects that
were used, the new state of each modified objects, and the new states of any newly-persistent
objects. The newly-persistent objects are found by tracing references from the modified objects.
If a reference is found to an object not listed in the swizzle table that object does not exist at

an OR, and therefore is about to become persistent.

14



Both the modified objects and newly-persistent objects must be unswizzled before being
sent back to the ORs. The FE uses the swizzle table to do this. References to newly-persistent
objects must be treated specially since the ORs create their names, not the FE; they are
unswizzled into an index representing the object’s sequence number in the list of newly persistent
objects for this transaction, and they are tagged to distinguish them from orefs.

The FE sends the commit information to an OR (one that owns some of the objects used
by the transaction). That OR acts as the coordinator of a two-phase commit process in which
ORs that own objects used in the transaction attempt to validate the transaction (i.e., check
whether the versions used are still the current versions). (A faster commit is used if only that
OR is involved in the transaction.) More information about our commit technique can be found
in [1].

If the commit fails, the FE is given the xrefs of all the objects for which validation failed.
It discards these objects (turning them into surrogates) and undoes all modifications made by
the aborted transaction. If a discarded object is needed by a subsequent transaction, the latest
version will be fetched from the OR at that point.

Our scheme ensures that a transaction commits only if it accessed the current versions of
objects. If some cached data is stale, no inconsistent information will be made persistent, but
time can be lost if transactions must abort because they used stale data. To prevent this loss
of time, the ORs involved in a commit notify FEs about objects that have been invalidated by
the commit. In response to such a message, an FE discards the invalidated object, turning it
into a surrogate. In addition, if the object has been used by the current transaction, the FE

aborts that transaction (this is the source of the will-abort exception seen in section 2.6).

3.2.7 Garbage Collection

Periodically the FE does garbage collection to free up space in the local cache. The roots for
this collection are the handles in the handle table. Both the current and old versions of the
modified objects must be included in the roots so that the proper objects will remain accessible
whether the current transaction commits or aborts.

As noted in Section 3.2.1, an OR records the references held by an FE in the FE-table. The

local garbage collection at the FE may get rid of many of these references. Therefore, after

15



a collection, the FE informs ORs of the references it continues to hold for their objects (the
message is denoted as trim-fe-table in Figure 3.2). This information is used by the OR to

remove entries from the FE-table, which is one of the roots for its garbage collection.

3.2.8 Inter-OR references

Now we discuss how to handle remote references at the ORs. Since an xref cannot be stored in
a slot that is just big enough to hold an oref, objects cannot contain direct references to remote
objects. Instead, we use OR-surrogates for such references. An OR-surrogate is much like the
previously-described surrogates (which are properly called FE-surrogates) in that it contains an
xref and serves as a reference to an object usually stored elsewhere; however, an OR-surrogate
does not have a dispatch vector. When an OR-surrogate arrives at an FE, it is immediately
converted into an FE-surrogate as part of the process of building the swizzle table.

When an FE fetches an object A containing a reference to a remote object B, it gets the
oref of the surrogate for B that is stored at the OR holding A. This situation is illustrated in
Figure 3.2.8. If the FE needs to use B, it must first obtain the xref stored in the surrogate,
and then use the xref to fetch object B. This sequence of events implies that fetching object
B requires two round trips. However, in the common case where the surrogate for B is in the
OR’s memory when a request for A arrives, we can eliminate the first round trip by sending the
xref for B along with A, effectively prefetching the surrogate for B to the FE. With prefetching,
there will usually be only one round trip to find an object, unless the object has moved from
B. Even when the object has moved away, there will be a problem only if the move is very
recent, because ORs communicate about objects that move, and update the xrefs stored in

their surrogates when they find out about moves.

4 Status

We have implemented a partial prototype of Thor, called TH. TH is implemented in Argus
[17]. It is a distributed system in which clients run at different nodes from ORs, and there are
several ORs. We have built a veneer for Emacs Lisp [16] and Argus, and have written a toy
hypertext application on top of Emacs and TH.

We have implemented the swizzling and filling techniques described, and local garbage

16



OR1 OR 2

O
ol o] .

surrogate

Figure 5: An OR-surrogate

collection built on top of the Argus garbage collector. Argus stable storage was useful for getting
ORs working quickly, but our research version of Argus limited the size of databases that we
could build in TH. We have moved most persistent store management into TH, delegating the
details of disk storage to the Unix filesystem for now. Distributed garbage collection is currently
being implemented.

Implementing TH has allowed us to firm up and test some of our implementation decisions.
We plan to use TH as a test bed for studying various research issues, e.g., prefetching mech-
anisms, indexing mechanisms, and distributed garbage collection techniques. TH will also be
used as a basis for some applications so that we can get a better understanding of how well our
design meets the needs of users. We are also using simulations as a way of investigating new
techniques for method dispatching, reading and writing persistent storage, cache management,

and concurrency control.

5 Discussion

Thor is a new object-oriented system intended to support heterogeneous sharing of objects in
a distributed system in which clients run on workstations and persistent objects are stored at
servers. Thor provides a universe of active objects; clients interact with Thor by requesting
it to run methods on the shared objects. Such an interface guarantees that objects are used
properly (i.e., by invoking their methods) and it also supports heterogeneity since objects can
be freely shared between applications without knowing anything about what languages were
used to implement the applications.

To obtain this safety and convenience at a reasonable cost, however, is a challenge. We

17



discussed some of the implementation techniques that are needed to get good performance.
We focussed on the component of the system that implemented the Thor interface at the
client workstations. The component (the FE) uses object caching and prefetching to improve
performance of client code.

Thor is unique in managing the cache on the basis of objects rather than larger units such as
pages and files. We compensate for the relatively small size of objects by bring over extra objects
(prefetching) whenever we fetch an object. We conjecture that object caching will work better
than caching based on larger units because we will be able to use the cache more effectively.
We will be able to prefetch useful objects (more useful than just getting what is physically near
the fetched object) and when we discard objects we can treat them as individuals. However, at
present this is just a conjecture and we are performing experiments to test its validity.

We are starting to work on a full prototype implementation of Thor; performance and
portability are important goals of this implementation. We are also firming up the details of
our language design, and we are studing extensions to the Thor interface, such as triggers,

constraints, and support for very long transactions.

References

[1] Atul Adya. A distributed commit protocol for optimistic concurrency control. Master’s

thesis, Massachusetts Institute of Technology, 1993. Forthcoming.

[2] Paul Butterworth, Allen Otis, and Jacob Stein. The gemstone object database management

system. Communications of the ACM, 34(10):64-77, October 1991.

[3] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. Language definition. In Greg Nelson, editor, Systems Programming in Modula-3,

chapter 2. Prentice-Hall, 1991.

[4] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471-522, December 1985.

[65] Mark Day. Managing a Cache of Swizzled Objects and Surrogates. PhD thesis, Mas-

sachusetts Institute of Technology, 1993. Forthcoming.

18



[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mark Day, Barbara Liskov, Umesh Maheshwari, and Andrew C. Myers. Naming and

locating objects in thor. Submitted for publication, 1993.

0. Deux and et al. The 0@-(2) system. Communications of the ACM, 34(10):34-48,
October 1991.

David J. DeWitt, David Maier, Philippe Futtersack, and Fernando Velez. A study of
three alternative workstation-server architectures for object oriented database systems. In

Proceedings of the 16th VLDB Conference, pages 107-121, 1990.

D.H. Fishman and et al. An object-oriented database management system. ACM Trans-

actions on Office Information Systems, 5(1):48-69, January 1987.

Cary G. Gray and David R. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. In Proceedings of the Twelfth ACM Symposium on

Operating System Principles, pages 202-210, 1989.

Maurice Herlihy and Barbara Liskov. A value transmission method for abstract data types.

ACM Transactions on Programming Languages and Systems, 4(4):527-551, October 1982.

Deborah J. Hwang and Barbara Liskov. A new indexing scheme for object sets. Submitted

to VLDB, 1993.

T. Kaehler and G. Krasner. LOOM — Large Object-Oriented Memory for Smalltalk-80
Systems, pages 298—307. Morgan Kaufmann Publishers, Inc., San Mateo, CA. 1990.

Won Kim and et al. Architecture of the orion next-generation database system. IEEFE

Transactions on Knowledge and Data Engineering, 2(1):109-124, March 1990.

Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The objectstore

database system. Communications of the ACM, 34(10):50-63, October 1991.

B. Lewis and D. Laliberte. Gnu emacs lisp reference manual, 1990. Free Software Foun-

dation, Cambridge, MA.

B. Liskov. Distributed programming in argus. Comm. of the ACM, 31(3):300-312, March
1988.

19



[18] B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication in the
mercury system. In Proc. of the 21st Annual Hawaii Conference on System Sciences,

pages 178-187. IEEE, January 1988.
[19] B. Liskov and et al. CLU Reference Manual. Springer-Verlag, 1984.

[20] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replication
in the harp file system. In Proc. of the Thirteenth ACM Symposium on Operating Systems

Principles, October 1991.

[21] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in thor. In
Tamer Ozsu, Umesh Dayal, and Patrick Valduriez, editors, Distributed Object Management,

pages 7777 Morgan Kaufmann, 1993.

[22] Barbara Liskov and Jeannette Wing. Family values: A semantic notion of subtyping. Tech-
nical Report MIT/LCS/TR-526, M.I.T. Laboratory for Computer Science, Cambridge,
MA. January 1993.

[23] Barbara Liskov and Jeannette Wing. Using extension maps to define subtypes. Submitted

for publication, 1993.

[24] Umesh Maheshwari. Distributed garbage collection in a client-server, transactional, per-

sistent object system. Master’s thesis, Massachusetts Institute of Technology, 1993.

[25] J. E. B. Moss. Working with persistent objects: To swizzle or not to swizzle. Technical

Report 90-38, COINS, University of Massachusetts - Amherst, 1990.

[26] J.E.B. Moss. Design of the mneme persistent object store. ACM Transactions on Office

Information Systems, 8(2):103-139, March 1990.

[27] Andrew C. Myers. Optimizing method dispatch in a heterogeneous object repository.

Master’s thesis, Massachusetts Institute of Technology, 1993. Forthcoming.

[28] D. Weinreb, D. Gerson, and C. Lamb. An object oriented system to support an integrated

programming environment. IEEE Transactions on Data Engineering, 11(2):33-43, 1988.

20



